vedo.volume
Work with volumetric datasets (voxel data).
1import glob 2import os 3import time 4from weakref import ref as weak_ref_to 5from typing import Union, List, Iterable 6from typing_extensions import Self 7 8import numpy as np 9 10import vedo.vtkclasses as vtki 11 12import vedo 13from vedo import transformations 14from vedo import utils 15from vedo.mesh import Mesh 16from vedo.core import VolumeAlgorithms 17from vedo.visual import VolumeVisual 18 19 20__docformat__ = "google" 21 22__doc__ = """ 23Work with volumetric datasets (voxel data). 24 25![](https://vedo.embl.es/images/volumetric/slicePlane2.png) 26""" 27 28__all__ = ["Volume"] 29 30 31########################################################################## 32class Volume(VolumeAlgorithms, VolumeVisual): 33 """ 34 Class to describe dataset that are defined on "voxels", 35 the 3D equivalent of 2D pixels. 36 """ 37 def __init__( 38 self, 39 input_obj=None, 40 dims=None, 41 origin=None, 42 spacing=None, 43 ) -> None: 44 """ 45 This class can be initialized with a numpy object, a `vtkImageData` or a list of 2D bmp files. 46 47 Arguments: 48 input_obj : (str, vtkImageData, np.ndarray) 49 input data can be a file name, a vtkImageData or a numpy object. 50 origin : (list) 51 set volume origin coordinates 52 spacing : (list) 53 voxel dimensions in x, y and z. 54 dims : (list) 55 specify the dimensions of the volume. 56 57 Note: 58 If your input is an array ordered as ZYX you can permute it to XYZ with: 59 `array = np.transpose(array, axes=[2, 1, 0])`. 60 Alternatively you can also use the `Volume(zyx_array).permute_axes(2,1,0)` method. 61 62 Example: 63 ```python 64 from vedo import Volume 65 vol = Volume("path/to/mydata/rec*.bmp") 66 vol.show() 67 ``` 68 69 Examples: 70 - [numpy2volume1.py](https://github.com/marcomusy/vedo/tree/master/examples/volumetric/numpy2volume1.py) 71 72 ![](https://vedo.embl.es/images/volumetric/numpy2volume1.png) 73 74 - [read_volume2.py](https://github.com/marcomusy/vedo/tree/master/examples/volumetric/read_volume2.py) 75 76 ![](https://vedo.embl.es/images/volumetric/read_volume2.png) 77 78 .. note:: 79 if a `list` of values is used for `alphas` this is interpreted 80 as a transfer function along the range of the scalar. 81 """ 82 super().__init__() 83 84 self.name = "Volume" 85 self.filename = "" 86 self.file_size = "" 87 88 self.info = {} 89 self.time = time.time() 90 91 self.actor = vtki.vtkVolume() 92 self.actor.retrieve_object = weak_ref_to(self) 93 self.properties = self.actor.GetProperty() 94 95 self.transform = None 96 self.point_locator = None 97 self.cell_locator = None 98 self.line_locator = None 99 100 ################### 101 if isinstance(input_obj, str): 102 if "https://" in input_obj: 103 input_obj = vedo.file_io.download(input_obj, verbose=False) # fpath 104 elif os.path.isfile(input_obj): 105 self.filename = input_obj 106 else: 107 input_obj = sorted(glob.glob(input_obj)) 108 109 ################### 110 inputtype = str(type(input_obj)) 111 112 # print('Volume inputtype', inputtype, c='b') 113 114 if input_obj is None: 115 img = vtki.vtkImageData() 116 117 elif utils.is_sequence(input_obj): 118 119 if isinstance(input_obj[0], str) and ".bmp" in input_obj[0].lower(): 120 # scan sequence of BMP files 121 ima = vtki.new("ImageAppend") 122 ima.SetAppendAxis(2) 123 pb = utils.ProgressBar(0, len(input_obj)) 124 for i in pb.range(): 125 f = input_obj[i] 126 if "_rec_spr" in f: # OPT specific 127 continue 128 picr = vtki.new("BMPReader") 129 picr.SetFileName(f) 130 picr.Update() 131 mgf = vtki.new("ImageMagnitude") 132 mgf.SetInputData(picr.GetOutput()) 133 mgf.Update() 134 ima.AddInputData(mgf.GetOutput()) 135 pb.print("loading...") 136 ima.Update() 137 img = ima.GetOutput() 138 139 else: 140 141 if len(input_obj.shape) == 1: 142 varr = utils.numpy2vtk(input_obj) 143 else: 144 varr = utils.numpy2vtk(input_obj.ravel(order="F")) 145 varr.SetName("input_scalars") 146 147 img = vtki.vtkImageData() 148 if dims is not None: 149 img.SetDimensions(dims[2], dims[1], dims[0]) 150 else: 151 if len(input_obj.shape) == 1: 152 vedo.logger.error("must set dimensions (dims keyword) in Volume") 153 raise RuntimeError() 154 img.SetDimensions(input_obj.shape) 155 img.GetPointData().AddArray(varr) 156 img.GetPointData().SetActiveScalars(varr.GetName()) 157 158 elif isinstance(input_obj, vtki.vtkImageData): 159 img = input_obj 160 161 elif isinstance(input_obj, str): 162 if "https://" in input_obj: 163 input_obj = vedo.file_io.download(input_obj, verbose=False) 164 img = vedo.file_io.loadImageData(input_obj) 165 self.filename = input_obj 166 167 else: 168 vedo.logger.error(f"cannot understand input type {inputtype}") 169 return 170 171 if dims is not None: 172 img.SetDimensions(dims) 173 174 if origin is not None: 175 img.SetOrigin(origin) 176 177 if spacing is not None: 178 img.SetSpacing(spacing) 179 180 self.dataset = img 181 self.transform = None 182 183 ##################################### 184 mapper = vtki.new("SmartVolumeMapper") 185 mapper.SetInputData(img) 186 self.actor.SetMapper(mapper) 187 188 if img.GetPointData().GetScalars(): 189 if img.GetPointData().GetScalars().GetNumberOfComponents() == 1: 190 self.properties.SetShade(True) 191 self.properties.SetInterpolationType(1) 192 self.cmap("RdBu_r") 193 self.alpha([0.0, 0.0, 0.2, 0.4, 0.8, 1.0]) 194 self.alpha_gradient(None) 195 self.properties.SetScalarOpacityUnitDistance(1.0) 196 197 self.pipeline = utils.OperationNode( 198 "Volume", comment=f"dims={tuple(self.dimensions())}", c="#4cc9f0" 199 ) 200 ####################################################################### 201 202 @property 203 def mapper(self): 204 """Return the underlying `vtkMapper` object.""" 205 return self.actor.GetMapper() 206 207 @mapper.setter 208 def mapper(self, mapper): 209 """ 210 Set the underlying `vtkMapper` object. 211 212 Arguments: 213 mapper : (str, vtkMapper) 214 either 'gpu', 'opengl_gpu', 'fixed' or 'smart' 215 """ 216 if isinstance(mapper, 217 (vtki.get_class("Mapper"), vtki.get_class("ImageResliceMapper")) 218 ): 219 pass 220 elif mapper is None: 221 mapper = vtki.new("SmartVolumeMapper") 222 elif "gpu" in mapper: 223 mapper = vtki.new("GPUVolumeRayCastMapper") 224 elif "opengl_gpu" in mapper: 225 mapper = vtki.new("OpenGLGPUVolumeRayCastMapper") 226 elif "smart" in mapper: 227 mapper = vtki.new("SmartVolumeMapper") 228 elif "fixed" in mapper: 229 mapper = vtki.new("FixedPointVolumeRayCastMapper") 230 else: 231 print("Error unknown mapper type", [mapper]) 232 raise RuntimeError() 233 mapper.SetInputData(self.dataset) 234 self.actor.SetMapper(mapper) 235 236 def c(self, *args, **kwargs) -> Self: 237 """Deprecated. Use `Volume.cmap()` instead.""" 238 vedo.logger.warning("Volume.c() is deprecated, use Volume.cmap() instead") 239 return self.cmap(*args, **kwargs) 240 241 def _update(self, data, reset_locators=False): 242 # reset_locators here is dummy 243 self.dataset = data 244 self.mapper.SetInputData(data) 245 self.dataset.GetPointData().Modified() 246 self.mapper.Modified() 247 self.mapper.Update() 248 return self 249 250 def __str__(self): 251 """Print a summary for the `Volume` object.""" 252 module = self.__class__.__module__ 253 name = self.__class__.__name__ 254 out = vedo.printc( 255 f"{module}.{name} at ({hex(self.memory_address())})".ljust(75), 256 c="c", bold=True, invert=True, return_string=True, 257 ) 258 out += "\x1b[0m\x1b[36;1m" 259 260 out+= "name".ljust(14) + ": " + str(self.name) + "\n" 261 if self.filename: 262 out+= "filename".ljust(14) + ": " + str(self.filename) + "\n" 263 264 out+= "dimensions".ljust(14) + ": " + str(self.shape) + "\n" 265 266 out+= "origin".ljust(14) + ": " 267 out+= utils.precision(self.origin(), 6) + "\n" 268 269 out+= "center".ljust(14) + ": " 270 out+= utils.precision(self.center(), 6) + "\n" 271 272 out+= "spacing".ljust(14) + ": " 273 out+= utils.precision(self.spacing(), 6) + "\n" 274 275 bnds = self.bounds() 276 bx1, bx2 = utils.precision(bnds[0], 3), utils.precision(bnds[1], 3) 277 by1, by2 = utils.precision(bnds[2], 3), utils.precision(bnds[3], 3) 278 bz1, bz2 = utils.precision(bnds[4], 3), utils.precision(bnds[5], 3) 279 out+= "bounds".ljust(14) + ":" 280 out+= " x=(" + bx1 + ", " + bx2 + ")," 281 out+= " y=(" + by1 + ", " + by2 + ")," 282 out+= " z=(" + bz1 + ", " + bz2 + ")\n" 283 284 out+= "memory size".ljust(14) + ": " 285 out+= str(int(self.dataset.GetActualMemorySize()/1024+0.5))+" MB\n" 286 287 st = self.dataset.GetScalarTypeAsString() 288 out+= "scalar size".ljust(14) + ": " 289 out+= str(self.dataset.GetScalarSize()) + f" bytes ({st})\n" 290 out+= "scalar range".ljust(14) + ": " 291 out+= str(self.dataset.GetScalarRange()) + "\n" 292 293 #utils.print_histogram(self, logscale=True, bins=8, height=15, c="b", bold=True) 294 return out.rstrip() + "\x1b[0m" 295 296 def _repr_html_(self): 297 """ 298 HTML representation of the Volume object for Jupyter Notebooks. 299 300 Returns: 301 HTML text with the image and some properties. 302 """ 303 import io 304 import base64 305 from PIL import Image 306 307 library_name = "vedo.volume.Volume" 308 help_url = "https://vedo.embl.es/docs/vedo/volume.html" 309 310 arr = self.thumbnail(azimuth=0, elevation=-60, zoom=1.4, axes=True) 311 312 im = Image.fromarray(arr) 313 buffered = io.BytesIO() 314 im.save(buffered, format="PNG", quality=100) 315 encoded = base64.b64encode(buffered.getvalue()).decode("utf-8") 316 url = "data:image/png;base64," + encoded 317 image = f"<img src='{url}'></img>" 318 319 # statisitics 320 bounds = "<br/>".join( 321 [ 322 utils.precision(min_x, 4) + " ... " + utils.precision(max_x, 4) 323 for min_x, max_x in zip(self.bounds()[::2], self.bounds()[1::2]) 324 ] 325 ) 326 327 help_text = "" 328 if self.name: 329 help_text += f"<b> {self.name}:   </b>" 330 help_text += '<b><a href="' + help_url + '" target="_blank">' + library_name + "</a></b>" 331 if self.filename: 332 dots = "" 333 if len(self.filename) > 30: 334 dots = "..." 335 help_text += f"<br/><code><i>({dots}{self.filename[-30:]})</i></code>" 336 337 pdata = "" 338 if self.dataset.GetPointData().GetScalars(): 339 if self.dataset.GetPointData().GetScalars().GetName(): 340 name = self.dataset.GetPointData().GetScalars().GetName() 341 pdata = "<tr><td><b> point data array </b></td><td>" + name + "</td></tr>" 342 343 cdata = "" 344 if self.dataset.GetCellData().GetScalars(): 345 if self.dataset.GetCellData().GetScalars().GetName(): 346 name = self.dataset.GetCellData().GetScalars().GetName() 347 cdata = "<tr><td><b> voxel data array </b></td><td>" + name + "</td></tr>" 348 349 img = self.dataset 350 351 allt = [ 352 "<table>", 353 "<tr>", 354 "<td>", 355 image, 356 "</td>", 357 "<td style='text-align: center; vertical-align: center;'><br/>", 358 help_text, 359 "<table>", 360 "<tr><td><b> bounds </b> <br/> (x/y/z) </td><td>" + str(bounds) + "</td></tr>", 361 "<tr><td><b> dimensions </b></td><td>" + str(img.GetDimensions()) + "</td></tr>", 362 "<tr><td><b> voxel spacing </b></td><td>" 363 + utils.precision(img.GetSpacing(), 3) 364 + "</td></tr>", 365 "<tr><td><b> in memory size </b></td><td>" 366 + str(int(img.GetActualMemorySize() / 1024)) 367 + "MB</td></tr>", 368 pdata, 369 cdata, 370 "<tr><td><b> scalar range </b></td><td>" 371 + utils.precision(img.GetScalarRange(), 4) 372 + "</td></tr>", 373 "</table>", 374 "</table>", 375 ] 376 return "\n".join(allt) 377 378 def copy(self, deep=True) -> "Volume": 379 """Return a copy of the Volume. Alias of `clone()`.""" 380 return self.clone(deep=deep) 381 382 def clone(self, deep=True) -> "Volume": 383 """Return a clone copy of the Volume. Alias of `copy()`.""" 384 if deep: 385 newimg = vtki.vtkImageData() 386 newimg.CopyStructure(self.dataset) 387 newimg.CopyAttributes(self.dataset) 388 newvol = Volume(newimg) 389 else: 390 newvol = Volume(self.dataset) 391 392 prop = vtki.vtkVolumeProperty() 393 prop.DeepCopy(self.properties) 394 newvol.actor.SetProperty(prop) 395 newvol.properties = prop 396 397 newvol.pipeline = utils.OperationNode("clone", parents=[self], c="#bbd0ff", shape="diamond") 398 return newvol 399 400 def astype(self, dtype: Union[str, int]) -> Self: 401 """ 402 Reset the type of the scalars array. 403 404 Arguments: 405 dtype : (str) 406 the type of the scalars array in 407 ["int8", "uint8", "int16", "uint16", "int32", "uint32", "float32", "float64"] 408 """ 409 if dtype in ["int8", "uint8", "int16", "uint16", "int32", "uint32", "float32", "float64"]: 410 caster = vtki.new("ImageCast") 411 caster.SetInputData(self.dataset) 412 caster.SetOutputScalarType(int(vtki.array_types[dtype])) 413 caster.ClampOverflowOn() 414 caster.Update() 415 self._update(caster.GetOutput()) 416 self.pipeline = utils.OperationNode(f"astype({dtype})", parents=[self], c="#4cc9f0") 417 else: 418 vedo.logger.error(f"astype(): unknown type {dtype}") 419 raise ValueError() 420 return self 421 422 def component_weight(self, i: int, weight: float) -> Self: 423 """Set the scalar component weight in range [0,1].""" 424 self.properties.SetComponentWeight(i, weight) 425 return self 426 427 def xslice(self, i: int) -> Mesh: 428 """Extract the slice at index `i` of volume along x-axis.""" 429 vslice = vtki.new("ImageDataGeometryFilter") 430 vslice.SetInputData(self.dataset) 431 nx, ny, nz = self.dataset.GetDimensions() 432 if i > nx - 1: 433 i = nx - 1 434 vslice.SetExtent(i, i, 0, ny, 0, nz) 435 vslice.Update() 436 m = Mesh(vslice.GetOutput()) 437 m.pipeline = utils.OperationNode(f"xslice {i}", parents=[self], c="#4cc9f0:#e9c46a") 438 return m 439 440 def yslice(self, j: int) -> Mesh: 441 """Extract the slice at index `j` of volume along y-axis.""" 442 vslice = vtki.new("ImageDataGeometryFilter") 443 vslice.SetInputData(self.dataset) 444 nx, ny, nz = self.dataset.GetDimensions() 445 if j > ny - 1: 446 j = ny - 1 447 vslice.SetExtent(0, nx, j, j, 0, nz) 448 vslice.Update() 449 m = Mesh(vslice.GetOutput()) 450 m.pipeline = utils.OperationNode(f"yslice {j}", parents=[self], c="#4cc9f0:#e9c46a") 451 return m 452 453 def zslice(self, k: int) -> Mesh: 454 """Extract the slice at index `i` of volume along z-axis.""" 455 vslice = vtki.new("ImageDataGeometryFilter") 456 vslice.SetInputData(self.dataset) 457 nx, ny, nz = self.dataset.GetDimensions() 458 if k > nz - 1: 459 k = nz - 1 460 vslice.SetExtent(0, nx, 0, ny, k, k) 461 vslice.Update() 462 m = Mesh(vslice.GetOutput()) 463 m.pipeline = utils.OperationNode(f"zslice {k}", parents=[self], c="#4cc9f0:#e9c46a") 464 return m 465 466 def slice_plane(self, origin: List[float], normal: List[float], autocrop=False, border=0.5, mode="linear") -> Mesh: 467 """ 468 Extract the slice along a given plane position and normal. 469 470 Two metadata arrays are added to the output Mesh: 471 - "shape" : contains the shape of the slice 472 - "original_bounds" : contains the original bounds of the slice 473 One can access them with e.g. `myslice.metadata["shape"]`. 474 475 Arguments: 476 origin : (list) 477 position of the plane 478 normal : (list) 479 normal to the plane 480 autocrop : (bool) 481 crop the output to the minimal possible size 482 border : (float) 483 add a border to the output slice 484 mode : (str) 485 interpolation mode, one of the following: "linear", "nearest", "cubic" 486 487 Example: 488 - [slice_plane1.py](https://github.com/marcomusy/vedo/tree/master/examples/volumetric/slice_plane1.py) 489 490 ![](https://vedo.embl.es/images/volumetric/slicePlane1.gif) 491 492 - [slice_plane2.py](https://github.com/marcomusy/vedo/tree/master/examples/volumetric/slice_plane2.py) 493 494 ![](https://vedo.embl.es/images/volumetric/slicePlane2.png) 495 496 - [slice_plane3.py](https://github.com/marcomusy/vedo/tree/master/examples/volumetric/slice_plane3.py) 497 498 ![](https://vedo.embl.es/images/volumetric/slicePlane3.jpg) 499 """ 500 newaxis = utils.versor(normal) 501 pos = np.array(origin) 502 initaxis = (0, 0, 1) 503 crossvec = np.cross(initaxis, newaxis) 504 angle = np.arccos(np.dot(initaxis, newaxis)) 505 T = vtki.vtkTransform() 506 T.PostMultiply() 507 T.RotateWXYZ(np.rad2deg(angle), crossvec.tolist()) 508 T.Translate(pos.tolist()) 509 510 reslice = vtki.new("ImageReslice") 511 reslice.SetResliceAxes(T.GetMatrix()) 512 reslice.SetInputData(self.dataset) 513 reslice.SetOutputDimensionality(2) 514 reslice.SetTransformInputSampling(True) 515 reslice.SetGenerateStencilOutput(False) 516 if border: 517 reslice.SetBorder(True) 518 reslice.SetBorderThickness(border) 519 else: 520 reslice.SetBorder(False) 521 if mode == "linear": 522 reslice.SetInterpolationModeToLinear() 523 elif mode == "nearest": 524 reslice.SetInterpolationModeToNearestNeighbor() 525 elif mode == "cubic": 526 reslice.SetInterpolationModeToCubic() 527 else: 528 vedo.logger.error(f"in slice_plane(): unknown interpolation mode {mode}") 529 raise ValueError() 530 reslice.SetAutoCropOutput(not autocrop) 531 reslice.Update() 532 img = reslice.GetOutput() 533 534 vslice = vtki.new("ImageDataGeometryFilter") 535 vslice.SetInputData(img) 536 vslice.Update() 537 538 msh = Mesh(vslice.GetOutput()).apply_transform(T) 539 msh.properties.LightingOff() 540 541 d0, d1, _ = img.GetDimensions() 542 varr1 = utils.numpy2vtk([d1, d0], name="shape") 543 varr2 = utils.numpy2vtk(img.GetBounds(), name="original_bounds") 544 msh.dataset.GetFieldData().AddArray(varr1) 545 msh.dataset.GetFieldData().AddArray(varr2) 546 msh.pipeline = utils.OperationNode("slice_plane", parents=[self], c="#4cc9f0:#e9c46a") 547 return msh 548 549 def slab(self, slice_range=(), axis='z', operation="mean") -> Mesh: 550 """ 551 Extract a slab from a `Volume` by combining 552 all of the slices of an image to create a single slice. 553 554 Returns a `Mesh` containing metadata which 555 can be accessed with e.g. `mesh.metadata["slab_range"]`. 556 557 Metadata: 558 slab_range : (list) 559 contains the range of slices extracted 560 slab_axis : (str) 561 contains the axis along which the slab was extracted 562 slab_operation : (str) 563 contains the operation performed on the slab 564 slab_bounding_box : (list) 565 contains the bounding box of the slab 566 567 Arguments: 568 slice_range : (list) 569 range of slices to extract 570 axis : (str) 571 axis along which to extract the slab 572 operation : (str) 573 operation to perform on the slab, 574 allowed values are: "sum", "min", "max", "mean". 575 576 Example: 577 - [slab.py](https://github.com/marcomusy/vedo/blob/master/examples/volumetric/slab_vol.py) 578 579 ![](https://vedo.embl.es/images/volumetric/slab_vol.jpg) 580 """ 581 if len(slice_range) != 2: 582 vedo.logger.error("in slab(): slice_range is empty or invalid") 583 raise ValueError() 584 585 islab = vtki.new("ImageSlab") 586 islab.SetInputData(self.dataset) 587 588 if operation in ["+", "add", "sum"]: 589 islab.SetOperationToSum() 590 elif "min" in operation: 591 islab.SetOperationToMin() 592 elif "max" in operation: 593 islab.SetOperationToMax() 594 elif "mean" in operation: 595 islab.SetOperationToMean() 596 else: 597 vedo.logger.error(f"in slab(): unknown operation {operation}") 598 raise ValueError() 599 600 dims = self.dimensions() 601 if axis == 'x': 602 islab.SetOrientationToX() 603 if slice_range[0] > dims[0]-1: 604 slice_range[0] = dims[0]-1 605 if slice_range[1] > dims[0]-1: 606 slice_range[1] = dims[0]-1 607 elif axis == 'y': 608 islab.SetOrientationToY() 609 if slice_range[0] > dims[1]-1: 610 slice_range[0] = dims[1]-1 611 if slice_range[1] > dims[1]-1: 612 slice_range[1] = dims[1]-1 613 elif axis == 'z': 614 islab.SetOrientationToZ() 615 if slice_range[0] > dims[2]-1: 616 slice_range[0] = dims[2]-1 617 if slice_range[1] > dims[2]-1: 618 slice_range[1] = dims[2]-1 619 else: 620 vedo.logger.error(f"Error in slab(): unknown axis {axis}") 621 raise RuntimeError() 622 623 islab.SetSliceRange(slice_range) 624 islab.Update() 625 626 msh = Mesh(islab.GetOutput()).lighting('off') 627 msh.mapper.SetLookupTable(utils.ctf2lut(self, msh)) 628 msh.mapper.SetScalarRange(self.scalar_range()) 629 630 msh.metadata["slab_range"] = slice_range 631 msh.metadata["slab_axis"] = axis 632 msh.metadata["slab_operation"] = operation 633 634 # compute bounds of slab 635 origin = list(self.origin()) 636 spacing = list(self.spacing()) 637 if axis == 'x': 638 msh.metadata["slab_bounding_box"] = [ 639 origin[0] + slice_range[0]*spacing[0], 640 origin[0] + slice_range[1]*spacing[0], 641 origin[1], 642 origin[1] + dims[1]*spacing[1], 643 origin[2], 644 origin[2] + dims[2]*spacing[2], 645 ] 646 elif axis == 'y': 647 msh.metadata["slab_bounding_box"] = [ 648 origin[0], 649 origin[0] + dims[0]*spacing[0], 650 origin[1] + slice_range[0]*spacing[1], 651 origin[1] + slice_range[1]*spacing[1], 652 origin[2], 653 origin[2] + dims[2]*spacing[2], 654 ] 655 elif axis == 'z': 656 msh.metadata["slab_bounding_box"] = [ 657 origin[0], 658 origin[0] + dims[0]*spacing[0], 659 origin[1], 660 origin[1] + dims[1]*spacing[1], 661 origin[2] + slice_range[0]*spacing[2], 662 origin[2] + slice_range[1]*spacing[2], 663 ] 664 665 msh.pipeline = utils.OperationNode( 666 f"slab{slice_range}", 667 comment=f"axis={axis}, operation={operation}", 668 parents=[self], 669 c="#4cc9f0:#e9c46a", 670 ) 671 msh.name = "SlabMesh" 672 return msh 673 674 675 def warp( 676 self, 677 source: Union["vedo.Points", List], 678 target: Union["vedo.Points", List], 679 sigma=1, mode="3d", fit=True, 680 ) -> Self: 681 """ 682 Warp volume scalars within a Volume by specifying 683 source and target sets of points. 684 685 Arguments: 686 source : (Points, list) 687 the list of source points 688 target : (Points, list) 689 the list of target points 690 fit : (bool) 691 fit/adapt the old bounding box to the warped geometry 692 """ 693 if isinstance(source, vedo.Points): 694 source = source.vertices 695 if isinstance(target, vedo.Points): 696 target = target.vertices 697 698 NLT = transformations.NonLinearTransform() 699 NLT.source_points = source 700 NLT.target_points = target 701 NLT.sigma = sigma 702 NLT.mode = mode 703 704 self.apply_transform(NLT, fit=fit) 705 self.pipeline = utils.OperationNode("warp", parents=[self], c="#4cc9f0") 706 return self 707 708 def apply_transform( 709 self, 710 T: Union[transformations.LinearTransform, transformations.NonLinearTransform], 711 fit=True, interpolation="cubic", 712 ) -> Self: 713 """ 714 Apply a transform to the scalars in the volume. 715 716 Arguments: 717 T : (LinearTransform, NonLinearTransform) 718 The transformation to be applied 719 fit : (bool) 720 fit/adapt the old bounding box to the modified geometry 721 interpolation : (str) 722 one of the following: "nearest", "linear", "cubic" 723 """ 724 if utils.is_sequence(T): 725 T = transformations.LinearTransform(T) 726 727 TI = T.compute_inverse() 728 729 reslice = vtki.new("ImageReslice") 730 reslice.SetInputData(self.dataset) 731 reslice.SetResliceTransform(TI.T) 732 reslice.SetOutputDimensionality(3) 733 if "lin" in interpolation.lower(): 734 reslice.SetInterpolationModeToLinear() 735 elif "near" in interpolation.lower(): 736 reslice.SetInterpolationModeToNearestNeighbor() 737 elif "cubic" in interpolation.lower(): 738 reslice.SetInterpolationModeToCubic() 739 else: 740 vedo.logger.error( 741 f"in apply_transform: unknown interpolation mode {interpolation}") 742 raise ValueError() 743 reslice.SetAutoCropOutput(fit) 744 reslice.Update() 745 self._update(reslice.GetOutput()) 746 self.transform = T 747 self.pipeline = utils.OperationNode( 748 "apply_transform", parents=[self], c="#4cc9f0") 749 return self 750 751 def imagedata(self) -> vtki.vtkImageData: 752 """ 753 DEPRECATED: 754 Use `Volume.dataset` instead. 755 756 Return the underlying `vtkImagaData` object. 757 """ 758 print("Volume.imagedata() is deprecated, use Volume.dataset instead") 759 return self.dataset 760 761 def modified(self) -> Self: 762 """ 763 Mark the object as modified. 764 765 Example: 766 767 - [numpy2volume0.py](https://github.com/marcomusy/vedo/tree/master/examples/volumetric/numpy2volume0.py) 768 """ 769 scals = self.dataset.GetPointData().GetScalars() 770 if scals: 771 scals.Modified() 772 return self 773 774 def tonumpy(self) -> np.ndarray: 775 """ 776 Get read-write access to voxels of a Volume object as a numpy array. 777 778 When you set values in the output image, you don't want numpy to reallocate the array 779 but instead set values in the existing array, so use the [:] operator. 780 781 Example: 782 `arr[:] = arr*2 + 15` 783 784 If the array is modified add a call to: 785 `volume.modified()` 786 when all your modifications are completed. 787 """ 788 narray_shape = tuple(reversed(self.dataset.GetDimensions())) 789 790 scals = self.dataset.GetPointData().GetScalars() 791 comps = scals.GetNumberOfComponents() 792 if comps == 1: 793 narray = utils.vtk2numpy(scals).reshape(narray_shape) 794 narray = np.transpose(narray, axes=[2, 1, 0]) 795 else: 796 narray = utils.vtk2numpy(scals).reshape(*narray_shape, comps) 797 narray = np.transpose(narray, axes=[2, 1, 0, 3]) 798 799 # narray = utils.vtk2numpy(self.dataset.GetPointData().GetScalars()).reshape(narray_shape) 800 # narray = np.transpose(narray, axes=[2, 1, 0]) 801 return narray 802 803 @property 804 def shape(self) -> np.ndarray: 805 """Return the nr. of voxels in the 3 dimensions.""" 806 return np.array(self.dataset.GetDimensions()) 807 808 def dimensions(self) -> np.ndarray: 809 """Return the nr. of voxels in the 3 dimensions.""" 810 return np.array(self.dataset.GetDimensions()) 811 812 def scalar_range(self) -> np.ndarray: 813 """Return the range of the scalar values.""" 814 return np.array(self.dataset.GetScalarRange()) 815 816 def spacing(self, s=None) -> Union[Self, Iterable[float]]: 817 """Set/get the voxels size in the 3 dimensions.""" 818 if s is not None: 819 self.dataset.SetSpacing(s) 820 return self 821 return np.array(self.dataset.GetSpacing()) 822 823 def origin(self, s=None) -> Union[Self, Iterable[float]]: 824 """ 825 Set/get the origin of the volumetric dataset. 826 827 The origin is the position in world coordinates of the point index (0,0,0). 828 This point does not have to be part of the dataset, in other words, 829 the dataset extent does not have to start at (0,0,0) and the origin 830 can be outside of the dataset bounding box. 831 The origin plus spacing determine the position in space of the points. 832 """ 833 if s is not None: 834 self.dataset.SetOrigin(s) 835 return self 836 return np.array(self.dataset.GetOrigin()) 837 838 def pos(self, p=None) -> Union[Self, Iterable[float]]: 839 """Set/get the position of the volumetric dataset.""" 840 if p is not None: 841 self.origin(p) 842 return self 843 return self.origin() 844 845 def center(self) -> np.ndarray: 846 """Get the center of the volumetric dataset.""" 847 # note that this does not have the set method like origin and spacing 848 return np.array(self.dataset.GetCenter()) 849 850 def shift(self, s: list) -> Self: 851 """Shift the volumetric dataset by a vector.""" 852 self.origin(self.origin() + np.array(s)) 853 return self 854 855 def rotate_x(self, angle: float, rad=False, around=None) -> Self: 856 """ 857 Rotate around x-axis. If angle is in radians set `rad=True`. 858 859 Use `around` to define a pivoting point. 860 """ 861 if angle == 0: 862 return self 863 LT = transformations.LinearTransform().rotate_x(angle, rad, around) 864 return self.apply_transform(LT, fit=True, interpolation="linear") 865 866 def rotate_y(self, angle: float, rad=False, around=None) -> Self: 867 """ 868 Rotate around y-axis. If angle is in radians set `rad=True`. 869 870 Use `around` to define a pivoting point. 871 """ 872 if angle == 0: 873 return self 874 LT = transformations.LinearTransform().rotate_y(angle, rad, around) 875 return self.apply_transform(LT, fit=True, interpolation="linear") 876 877 def rotate_z(self, angle: float, rad=False, around=None) -> Self: 878 """ 879 Rotate around z-axis. If angle is in radians set `rad=True`. 880 881 Use `around` to define a pivoting point. 882 """ 883 if angle == 0: 884 return self 885 LT = transformations.LinearTransform().rotate_z(angle, rad, around) 886 return self.apply_transform(LT, fit=True, interpolation="linear") 887 888 def get_cell_from_ijk(self, ijk: list) -> int: 889 """ 890 Get the voxel id number at the given ijk coordinates. 891 892 Arguments: 893 ijk : (list) 894 the ijk coordinates of the voxel 895 """ 896 return self.dataset.ComputeCellId(ijk) 897 898 def get_point_from_ijk(self, ijk: list) -> int: 899 """ 900 Get the point id number at the given ijk coordinates. 901 902 Arguments: 903 ijk : (list) 904 the ijk coordinates of the voxel 905 """ 906 return self.dataset.ComputePointId(ijk) 907 908 def permute_axes(self, x: int, y: int, z: int) -> Self: 909 """ 910 Reorder the axes of the Volume by specifying 911 the input axes which are supposed to become the new X, Y, and Z. 912 """ 913 imp = vtki.new("ImagePermute") 914 imp.SetFilteredAxes(x, y, z) 915 imp.SetInputData(self.dataset) 916 imp.Update() 917 self._update(imp.GetOutput()) 918 self.pipeline = utils.OperationNode( 919 f"permute_axes({(x,y,z)})", parents=[self], c="#4cc9f0" 920 ) 921 return self 922 923 def resample(self, new_spacing: List[float], interpolation=1) -> Self: 924 """ 925 Resamples a `Volume` to be larger or smaller. 926 927 This method modifies the spacing of the input. 928 Linear interpolation is used to resample the data. 929 930 Arguments: 931 new_spacing : (list) 932 a list of 3 new spacings for the 3 axes 933 interpolation : (int) 934 0=nearest_neighbor, 1=linear, 2=cubic 935 """ 936 rsp = vtki.new("ImageResample") 937 oldsp = self.spacing() 938 for i in range(3): 939 if oldsp[i] != new_spacing[i]: 940 rsp.SetAxisOutputSpacing(i, new_spacing[i]) 941 rsp.InterpolateOn() 942 rsp.SetInterpolationMode(interpolation) 943 rsp.OptimizationOn() 944 rsp.Update() 945 self._update(rsp.GetOutput()) 946 self.pipeline = utils.OperationNode( 947 "resample", comment=f"spacing: {tuple(new_spacing)}", parents=[self], c="#4cc9f0" 948 ) 949 return self 950 951 952 def threshold(self, above=None, below=None, replace=None, replace_value=None) -> Self: 953 """ 954 Binary or continuous volume thresholding. 955 Find the voxels that contain a value above/below the input values 956 and replace them with a new value (default is 0). 957 """ 958 th = vtki.new("ImageThreshold") 959 th.SetInputData(self.dataset) 960 961 # sanity checks 962 if above is not None and below is not None: 963 if above == below: 964 return self 965 if above > below: 966 vedo.logger.warning("in volume.threshold(), above > below, skip.") 967 return self 968 969 ## cases 970 if below is not None and above is not None: 971 th.ThresholdBetween(above, below) 972 973 elif above is not None: 974 th.ThresholdByUpper(above) 975 976 elif below is not None: 977 th.ThresholdByLower(below) 978 979 ## 980 if replace is not None: 981 th.SetReplaceIn(True) 982 th.SetInValue(replace) 983 else: 984 th.SetReplaceIn(False) 985 986 if replace_value is not None: 987 th.SetReplaceOut(True) 988 th.SetOutValue(replace_value) 989 else: 990 th.SetReplaceOut(False) 991 992 th.Update() 993 self._update(th.GetOutput()) 994 self.pipeline = utils.OperationNode("threshold", parents=[self], c="#4cc9f0") 995 return self 996 997 def crop(self, left=None, right=None, back=None, front=None, bottom=None, top=None, VOI=()) -> Self: 998 """ 999 Crop a `Volume` object. 1000 1001 Arguments: 1002 left : (float) 1003 fraction to crop from the left plane (negative x) 1004 right : (float) 1005 fraction to crop from the right plane (positive x) 1006 back : (float) 1007 fraction to crop from the back plane (negative y) 1008 front : (float) 1009 fraction to crop from the front plane (positive y) 1010 bottom : (float) 1011 fraction to crop from the bottom plane (negative z) 1012 top : (float) 1013 fraction to crop from the top plane (positive z) 1014 VOI : (list) 1015 extract Volume Of Interest expressed in voxel numbers 1016 1017 Example: 1018 `vol.crop(VOI=(xmin, xmax, ymin, ymax, zmin, zmax)) # all integers nrs` 1019 """ 1020 extractVOI = vtki.new("ExtractVOI") 1021 extractVOI.SetInputData(self.dataset) 1022 1023 if VOI: 1024 extractVOI.SetVOI(VOI) 1025 else: 1026 d = self.dataset.GetDimensions() 1027 bx0, bx1, by0, by1, bz0, bz1 = 0, d[0]-1, 0, d[1]-1, 0, d[2]-1 1028 if left is not None: bx0 = int((d[0]-1)*left) 1029 if right is not None: bx1 = int((d[0]-1)*(1-right)) 1030 if back is not None: by0 = int((d[1]-1)*back) 1031 if front is not None: by1 = int((d[1]-1)*(1-front)) 1032 if bottom is not None: bz0 = int((d[2]-1)*bottom) 1033 if top is not None: bz1 = int((d[2]-1)*(1-top)) 1034 extractVOI.SetVOI(bx0, bx1, by0, by1, bz0, bz1) 1035 extractVOI.Update() 1036 self._update(extractVOI.GetOutput()) 1037 1038 self.pipeline = utils.OperationNode( 1039 "crop", parents=[self], c="#4cc9f0", comment=f"dims={tuple(self.dimensions())}" 1040 ) 1041 return self 1042 1043 def append(self, *volumes, axis="z", preserve_extents=False) -> Self: 1044 """ 1045 Take the components from multiple inputs and merges them into one output. 1046 Except for the append axis, all inputs must have the same extent. 1047 All inputs must have the same number of scalar components. 1048 The output has the same origin and spacing as the first input. 1049 The origin and spacing of all other inputs are ignored. 1050 All inputs must have the same scalar type. 1051 1052 Arguments: 1053 axis : (int, str) 1054 axis expanded to hold the multiple images 1055 preserve_extents : (bool) 1056 if True, the extent of the inputs is used to place 1057 the image in the output. The whole extent of the output is the union of the input 1058 whole extents. Any portion of the output not covered by the inputs is set to zero. 1059 The origin and spacing is taken from the first input. 1060 1061 Example: 1062 ```python 1063 from vedo import Volume, dataurl 1064 vol = Volume(dataurl+'embryo.tif') 1065 vol.append(vol, axis='x').show().close() 1066 ``` 1067 ![](https://vedo.embl.es/images/feats/volume_append.png) 1068 """ 1069 ima = vtki.new("ImageAppend") 1070 ima.SetInputData(self.dataset) 1071 # if not utils.is_sequence(volumes): 1072 # volumes = [volumes] 1073 for volume in volumes: 1074 if isinstance(volume, vtki.vtkImageData): 1075 ima.AddInputData(volume) 1076 else: 1077 ima.AddInputData(volume.dataset) 1078 ima.SetPreserveExtents(preserve_extents) 1079 if axis == "x": 1080 axis = 0 1081 elif axis == "y": 1082 axis = 1 1083 elif axis == "z": 1084 axis = 2 1085 ima.SetAppendAxis(axis) 1086 ima.Update() 1087 self._update(ima.GetOutput()) 1088 1089 self.pipeline = utils.OperationNode( 1090 "append", 1091 parents=[self, *volumes], 1092 c="#4cc9f0", 1093 comment=f"dims={tuple(self.dimensions())}", 1094 ) 1095 return self 1096 1097 def pad(self, voxels=10, value=0) -> Self: 1098 """ 1099 Add the specified number of voxels at the `Volume` borders. 1100 Voxels can be a list formatted as `[nx0, nx1, ny0, ny1, nz0, nz1]`. 1101 1102 Arguments: 1103 voxels : (int, list) 1104 number of voxels to be added (or a list of length 4) 1105 value : (int) 1106 intensity value (gray-scale color) of the padding 1107 1108 Example: 1109 ```python 1110 from vedo import Volume, dataurl, show 1111 iso = Volume(dataurl+'embryo.tif').isosurface() 1112 vol = iso.binarize(spacing=(100, 100, 100)).pad(10) 1113 vol.dilate([15,15,15]) 1114 show(iso, vol.isosurface(), N=2, axes=1) 1115 ``` 1116 ![](https://vedo.embl.es/images/volumetric/volume_pad.png) 1117 """ 1118 x0, x1, y0, y1, z0, z1 = self.dataset.GetExtent() 1119 pf = vtki.new("ImageConstantPad") 1120 pf.SetInputData(self.dataset) 1121 pf.SetConstant(value) 1122 if utils.is_sequence(voxels): 1123 pf.SetOutputWholeExtent( 1124 x0 - voxels[0], x1 + voxels[1], 1125 y0 - voxels[2], y1 + voxels[3], 1126 z0 - voxels[4], z1 + voxels[5], 1127 ) 1128 else: 1129 pf.SetOutputWholeExtent( 1130 x0 - voxels, x1 + voxels, 1131 y0 - voxels, y1 + voxels, 1132 z0 - voxels, z1 + voxels, 1133 ) 1134 pf.Update() 1135 self._update(pf.GetOutput()) 1136 self.pipeline = utils.OperationNode( 1137 "pad", comment=f"{voxels} voxels", parents=[self], c="#f28482" 1138 ) 1139 return self 1140 1141 def resize(self, newdims: List[int]) -> Self: 1142 """Increase or reduce the number of voxels of a Volume with interpolation.""" 1143 rsz = vtki.new("ImageResize") 1144 rsz.SetResizeMethodToOutputDimensions() 1145 rsz.SetInputData(self.dataset) 1146 rsz.SetOutputDimensions(newdims) 1147 rsz.Update() 1148 self.dataset = rsz.GetOutput() 1149 self._update(self.dataset) 1150 self.pipeline = utils.OperationNode( 1151 "resize", parents=[self], c="#4cc9f0", comment=f"dims={tuple(self.dimensions())}" 1152 ) 1153 return self 1154 1155 def normalize(self) -> Self: 1156 """Normalize that scalar components for each point.""" 1157 norm = vtki.new("ImageNormalize") 1158 norm.SetInputData(self.dataset) 1159 norm.Update() 1160 self._update(norm.GetOutput()) 1161 self.pipeline = utils.OperationNode("normalize", parents=[self], c="#4cc9f0") 1162 return self 1163 1164 def mirror(self, axis="x") -> Self: 1165 """ 1166 Mirror flip along one of the cartesian axes. 1167 """ 1168 img = self.dataset 1169 1170 ff = vtki.new("ImageFlip") 1171 ff.SetInputData(img) 1172 if axis.lower() == "x": 1173 ff.SetFilteredAxis(0) 1174 elif axis.lower() == "y": 1175 ff.SetFilteredAxis(1) 1176 elif axis.lower() == "z": 1177 ff.SetFilteredAxis(2) 1178 else: 1179 vedo.logger.error("mirror must be set to either x, y, z or n") 1180 raise RuntimeError() 1181 ff.Update() 1182 self._update(ff.GetOutput()) 1183 self.pipeline = utils.OperationNode(f"mirror {axis}", parents=[self], c="#4cc9f0") 1184 return self 1185 1186 def operation(self, operation: str, volume2=None) -> "Volume": 1187 """ 1188 Perform operations with `Volume` objects. 1189 Keyword `volume2` can be a constant `float`. 1190 1191 Possible operations are: 1192 ``` 1193 and, or, xor, nand, nor, not, 1194 +, -, /, 1/x, sin, cos, exp, log, 1195 abs, **2, sqrt, min, max, atan, atan2, median, 1196 mag, dot, gradient, divergence, laplacian. 1197 ``` 1198 1199 Example: 1200 ```py 1201 from vedo import Box, show 1202 vol1 = Box(size=(35,10, 5)).binarize() 1203 vol2 = Box(size=( 5,10,35)).binarize() 1204 vol = vol1.operation("xor", vol2) 1205 show([[vol1, vol2], 1206 ["vol1 xor vol2", vol]], 1207 N=2, axes=1, viewup="z", 1208 ).close() 1209 ``` 1210 1211 Note: 1212 For logic operations, the two volumes must have the same bounds. 1213 If they do not, a larger image is created to contain both and the 1214 volumes are resampled onto the larger image before the operation is 1215 performed. This can be slow and memory intensive. 1216 1217 See also: 1218 - [volume_operations.py](https://github.com/marcomusy/vedo/tree/master/examples/volumetric/volume_operations.py) 1219 """ 1220 op = operation.lower() 1221 image1 = self.dataset 1222 1223 if op in ["and", "or", "xor", "nand", "nor"]: 1224 1225 if not np.allclose(image1.GetBounds(), volume2.dataset.GetBounds()): 1226 # create a larger image to contain both 1227 b1 = image1.GetBounds() 1228 b2 = volume2.dataset.GetBounds() 1229 b = [ 1230 min(b1[0], b2[0]), 1231 max(b1[1], b2[1]), 1232 min(b1[2], b2[2]), 1233 max(b1[3], b2[3]), 1234 min(b1[4], b2[4]), 1235 max(b1[5], b2[5]), 1236 ] 1237 dims1 = image1.GetDimensions() 1238 dims2 = volume2.dataset.GetDimensions() 1239 dims = [max(dims1[0], dims2[0]), max(dims1[1], dims2[1]), max(dims1[2], dims2[2])] 1240 1241 image = vtki.vtkImageData() 1242 image.SetDimensions(dims) 1243 spacing = ( 1244 (b[1] - b[0]) / dims[0], 1245 (b[3] - b[2]) / dims[1], 1246 (b[5] - b[4]) / dims[2], 1247 ) 1248 image.SetSpacing(spacing) 1249 image.SetOrigin((b[0], b[2], b[4])) 1250 image.AllocateScalars(vtki.VTK_UNSIGNED_CHAR, 1) 1251 image.GetPointData().GetScalars().FillComponent(0, 0) 1252 1253 interp1 = vtki.new("ImageReslice") 1254 interp1.SetInputData(image1) 1255 interp1.SetOutputExtent(image.GetExtent()) 1256 interp1.SetOutputOrigin(image.GetOrigin()) 1257 interp1.SetOutputSpacing(image.GetSpacing()) 1258 interp1.SetInterpolationModeToNearestNeighbor() 1259 interp1.Update() 1260 imageA = interp1.GetOutput() 1261 1262 interp2 = vtki.new("ImageReslice") 1263 interp2.SetInputData(volume2.dataset) 1264 interp2.SetOutputExtent(image.GetExtent()) 1265 interp2.SetOutputOrigin(image.GetOrigin()) 1266 interp2.SetOutputSpacing(image.GetSpacing()) 1267 interp2.SetInterpolationModeToNearestNeighbor() 1268 interp2.Update() 1269 imageB = interp2.GetOutput() 1270 1271 else: 1272 imageA = image1 1273 imageB = volume2.dataset 1274 1275 img_logic = vtki.new("ImageLogic") 1276 img_logic.SetInput1Data(imageA) 1277 img_logic.SetInput2Data(imageB) 1278 img_logic.SetOperation(["and", "or", "xor", "nand", "nor"].index(op)) 1279 img_logic.Update() 1280 1281 out_vol = Volume(img_logic.GetOutput()) 1282 out_vol.pipeline = utils.OperationNode( 1283 "operation", comment=f"{op}", parents=[self, volume2], c="#4cc9f0", shape="cylinder" 1284 ) 1285 return out_vol ###################################################### 1286 1287 if volume2 and isinstance(volume2, Volume): 1288 # assert image1.GetScalarType() == volume2.dataset.GetScalarType(), "volumes have different scalar types" 1289 # make sure they have the same bounds: 1290 assert np.allclose(image1.GetBounds(), volume2.dataset.GetBounds()), "volumes have different bounds" 1291 # make sure they have the same spacing: 1292 assert np.allclose(image1.GetSpacing(), volume2.dataset.GetSpacing()), "volumes have different spacing" 1293 # make sure they have the same origin: 1294 assert np.allclose(image1.GetOrigin(), volume2.dataset.GetOrigin()), "volumes have different origin" 1295 1296 mf = None 1297 if op in ["median"]: 1298 mf = vtki.new("ImageMedian3D") 1299 mf.SetInputData(image1) 1300 elif op in ["mag"]: 1301 mf = vtki.new("ImageMagnitude") 1302 mf.SetInputData(image1) 1303 elif op in ["dot"]: 1304 mf = vtki.new("ImageDotProduct") 1305 mf.SetInput1Data(image1) 1306 mf.SetInput2Data(volume2.dataset) 1307 elif op in ["grad", "gradient"]: 1308 mf = vtki.new("ImageGradient") 1309 mf.SetDimensionality(3) 1310 mf.SetInputData(image1) 1311 elif op in ["div", "divergence"]: 1312 mf = vtki.new("ImageDivergence") 1313 mf.SetInputData(image1) 1314 elif op in ["laplacian"]: 1315 mf = vtki.new("ImageLaplacian") 1316 mf.SetDimensionality(3) 1317 mf.SetInputData(image1) 1318 elif op in ["not"]: 1319 mf = vtki.new("ImageLogic") 1320 mf.SetInput1Data(image1) 1321 mf.SetOperation(4) 1322 1323 if mf is not None: 1324 mf.Update() 1325 vol = Volume(mf.GetOutput()) 1326 vol.pipeline = utils.OperationNode( 1327 "operation", comment=f"{op}", parents=[self], c="#4cc9f0", shape="cylinder" 1328 ) 1329 return vol ###################################################### 1330 1331 mat = vtki.new("ImageMathematics") 1332 mat.SetInput1Data(image1) 1333 1334 K = None 1335 1336 if utils.is_number(volume2): 1337 K = volume2 1338 mat.SetConstantK(K) 1339 mat.SetConstantC(K) 1340 1341 elif volume2 is not None: # assume image2 is a constant value 1342 mat.SetInput2Data(volume2.dataset) 1343 1344 # ########################### 1345 if op in ["+", "add", "plus"]: 1346 if K: 1347 mat.SetOperationToAddConstant() 1348 else: 1349 mat.SetOperationToAdd() 1350 1351 elif op in ["-", "subtract", "minus"]: 1352 if K: 1353 mat.SetConstantC(-float(K)) 1354 mat.SetOperationToAddConstant() 1355 else: 1356 mat.SetOperationToSubtract() 1357 1358 elif op in ["*", "multiply", "times"]: 1359 if K: 1360 mat.SetOperationToMultiplyByK() 1361 else: 1362 mat.SetOperationToMultiply() 1363 1364 elif op in ["/", "divide"]: 1365 if K: 1366 mat.SetConstantK(1.0 / K) 1367 mat.SetOperationToMultiplyByK() 1368 else: 1369 mat.SetOperationToDivide() 1370 1371 elif op in ["1/x", "invert"]: 1372 mat.SetOperationToInvert() 1373 elif op in ["sin"]: 1374 mat.SetOperationToSin() 1375 elif op in ["cos"]: 1376 mat.SetOperationToCos() 1377 elif op in ["exp"]: 1378 mat.SetOperationToExp() 1379 elif op in ["log"]: 1380 mat.SetOperationToLog() 1381 elif op in ["abs"]: 1382 mat.SetOperationToAbsoluteValue() 1383 elif op in ["**2", "square"]: 1384 mat.SetOperationToSquare() 1385 elif op in ["sqrt", "sqr"]: 1386 mat.SetOperationToSquareRoot() 1387 elif op in ["min"]: 1388 mat.SetOperationToMin() 1389 elif op in ["max"]: 1390 mat.SetOperationToMax() 1391 elif op in ["atan"]: 1392 mat.SetOperationToATAN() 1393 elif op in ["atan2"]: 1394 mat.SetOperationToATAN2() 1395 else: 1396 vedo.logger.error(f"unknown operation {operation}") 1397 raise RuntimeError() 1398 mat.Update() 1399 1400 self._update(mat.GetOutput()) 1401 1402 self.pipeline = utils.OperationNode( 1403 "operation", comment=f"{op}", parents=[self, volume2], shape="cylinder", c="#4cc9f0" 1404 ) 1405 return self 1406 1407 def frequency_pass_filter(self, low_cutoff=None, high_cutoff=None, order=1) -> Self: 1408 """ 1409 Low-pass and high-pass filtering become trivial in the frequency domain. 1410 A portion of the pixels/voxels are simply masked or attenuated. 1411 This function applies a high pass Butterworth filter that attenuates the 1412 frequency domain image. 1413 1414 The gradual attenuation of the filter is important. 1415 A simple high-pass filter would simply mask a set of pixels in the frequency domain, 1416 but the abrupt transition would cause a ringing effect in the spatial domain. 1417 1418 Arguments: 1419 low_cutoff : (list) 1420 the cutoff frequencies for x, y and z 1421 high_cutoff : (list) 1422 the cutoff frequencies for x, y and z 1423 order : (int) 1424 order determines sharpness of the cutoff curve 1425 """ 1426 # https://lorensen.github.io/VTKExamples/site/Cxx/ImageProcessing/IdealHighPass 1427 fft = vtki.new("ImageFFT") 1428 fft.SetInputData(self.dataset) 1429 fft.Update() 1430 out = fft.GetOutput() 1431 1432 if high_cutoff: 1433 blp = vtki.new("ImageButterworthLowPass") 1434 blp.SetInputData(out) 1435 blp.SetCutOff(high_cutoff) 1436 blp.SetOrder(order) 1437 blp.Update() 1438 out = blp.GetOutput() 1439 1440 if low_cutoff: 1441 bhp = vtki.new("ImageButterworthHighPass") 1442 bhp.SetInputData(out) 1443 bhp.SetCutOff(low_cutoff) 1444 bhp.SetOrder(order) 1445 bhp.Update() 1446 out = bhp.GetOutput() 1447 1448 rfft = vtki.new("ImageRFFT") 1449 rfft.SetInputData(out) 1450 rfft.Update() 1451 1452 ecomp = vtki.new("ImageExtractComponents") 1453 ecomp.SetInputData(rfft.GetOutput()) 1454 ecomp.SetComponents(0) 1455 ecomp.Update() 1456 self._update(ecomp.GetOutput()) 1457 self.pipeline = utils.OperationNode("frequency_pass_filter", parents=[self], c="#4cc9f0") 1458 return self 1459 1460 def smooth_gaussian(self, sigma=(2, 2, 2), radius=None) -> Self: 1461 """ 1462 Performs a convolution of the input Volume with a gaussian. 1463 1464 Arguments: 1465 sigma : (float, list) 1466 standard deviation(s) in voxel units. 1467 A list can be given to smooth in the three direction differently. 1468 radius : (float, list) 1469 radius factor(s) determine how far out the gaussian 1470 kernel will go before being clamped to zero. A list can be given too. 1471 """ 1472 gsf = vtki.new("ImageGaussianSmooth") 1473 gsf.SetDimensionality(3) 1474 gsf.SetInputData(self.dataset) 1475 if utils.is_sequence(sigma): 1476 gsf.SetStandardDeviations(sigma) 1477 else: 1478 gsf.SetStandardDeviation(sigma) 1479 if radius is not None: 1480 if utils.is_sequence(radius): 1481 gsf.SetRadiusFactors(radius) 1482 else: 1483 gsf.SetRadiusFactor(radius) 1484 gsf.Update() 1485 self._update(gsf.GetOutput()) 1486 self.pipeline = utils.OperationNode("smooth_gaussian", parents=[self], c="#4cc9f0") 1487 return self 1488 1489 def smooth_median(self, neighbours=(2, 2, 2)) -> Self: 1490 """ 1491 Median filter that replaces each pixel with the median value 1492 from a rectangular neighborhood around that pixel. 1493 """ 1494 imgm = vtki.new("ImageMedian3D") 1495 imgm.SetInputData(self.dataset) 1496 if utils.is_sequence(neighbours): 1497 imgm.SetKernelSize(neighbours[0], neighbours[1], neighbours[2]) 1498 else: 1499 imgm.SetKernelSize(neighbours, neighbours, neighbours) 1500 imgm.Update() 1501 self._update(imgm.GetOutput()) 1502 self.pipeline = utils.OperationNode("smooth_median", parents=[self], c="#4cc9f0") 1503 return self 1504 1505 def erode(self, neighbours=(2, 2, 2)) -> Self: 1506 """ 1507 Replace a voxel with the minimum over an ellipsoidal neighborhood of voxels. 1508 If `neighbours` of an axis is 1, no processing is done on that axis. 1509 1510 Examples: 1511 - [erode_dilate.py](https://github.com/marcomusy/vedo/tree/master/examples/volumetric/erode_dilate.py) 1512 1513 ![](https://vedo.embl.es/images/volumetric/erode_dilate.png) 1514 """ 1515 ver = vtki.new("ImageContinuousErode3D") 1516 ver.SetInputData(self.dataset) 1517 ver.SetKernelSize(neighbours[0], neighbours[1], neighbours[2]) 1518 ver.Update() 1519 self._update(ver.GetOutput()) 1520 self.pipeline = utils.OperationNode("erode", parents=[self], c="#4cc9f0") 1521 return self 1522 1523 def dilate(self, neighbours=(2, 2, 2)) -> Self: 1524 """ 1525 Replace a voxel with the maximum over an ellipsoidal neighborhood of voxels. 1526 If `neighbours` of an axis is 1, no processing is done on that axis. 1527 1528 Check also `erode()` and `pad()`. 1529 1530 Examples: 1531 - [erode_dilate.py](https://github.com/marcomusy/vedo/tree/master/examples/volumetric/erode_dilate.py) 1532 """ 1533 ver = vtki.new("ImageContinuousDilate3D") 1534 ver.SetInputData(self.dataset) 1535 ver.SetKernelSize(neighbours[0], neighbours[1], neighbours[2]) 1536 ver.Update() 1537 self._update(ver.GetOutput()) 1538 self.pipeline = utils.OperationNode("dilate", parents=[self], c="#4cc9f0") 1539 return self 1540 1541 def magnitude(self) -> Self: 1542 """Colapses components with magnitude function.""" 1543 imgm = vtki.new("ImageMagnitude") 1544 imgm.SetInputData(self.dataset) 1545 imgm.Update() 1546 self._update(imgm.GetOutput()) 1547 self.pipeline = utils.OperationNode("magnitude", parents=[self], c="#4cc9f0") 1548 return self 1549 1550 def topoints(self) -> "vedo.Points": 1551 """ 1552 Extract all image voxels as points. 1553 This function takes an input `Volume` and creates an `Mesh` 1554 that contains the points and the point attributes. 1555 1556 Examples: 1557 - [vol2points.py](https://github.com/marcomusy/vedo/tree/master/examples/volumetric/vol2points.py) 1558 """ 1559 v2p = vtki.new("ImageToPoints") 1560 v2p.SetInputData(self.dataset) 1561 v2p.Update() 1562 mpts = vedo.Points(v2p.GetOutput()) 1563 mpts.pipeline = utils.OperationNode("topoints", parents=[self], c="#4cc9f0:#e9c46a") 1564 return mpts 1565 1566 def euclidean_distance(self, anisotropy=False, max_distance=None) -> "Volume": 1567 """ 1568 Implementation of the Euclidean DT (Distance Transform) using Saito's algorithm. 1569 The distance map produced contains the square of the Euclidean distance values. 1570 The algorithm has a O(n^(D+1)) complexity over n x n x...x n images in D dimensions. 1571 1572 Check out also: https://en.wikipedia.org/wiki/Distance_transform 1573 1574 Arguments: 1575 anisotropy : bool 1576 used to define whether Spacing should be used in the 1577 computation of the distances. 1578 max_distance : bool 1579 any distance bigger than max_distance will not be 1580 computed but set to this specified value instead. 1581 1582 Examples: 1583 - [euclidian_dist.py](https://github.com/marcomusy/vedo/tree/master/examples/volumetric/euclidian_dist.py) 1584 """ 1585 euv = vtki.new("ImageEuclideanDistance") 1586 euv.SetInputData(self.dataset) 1587 euv.SetConsiderAnisotropy(anisotropy) 1588 if max_distance is not None: 1589 euv.InitializeOn() 1590 euv.SetMaximumDistance(max_distance) 1591 euv.SetAlgorithmToSaito() 1592 euv.Update() 1593 vol = Volume(euv.GetOutput()) 1594 vol.pipeline = utils.OperationNode("euclidean_distance", parents=[self], c="#4cc9f0") 1595 return vol 1596 1597 def correlation_with(self, vol2: "Volume", dim=2) -> "Volume": 1598 """ 1599 Find the correlation between two volumetric data sets. 1600 Keyword `dim` determines whether the correlation will be 3D, 2D or 1D. 1601 The default is a 2D Correlation. 1602 1603 The output size will match the size of the first input. 1604 The second input is considered the correlation kernel. 1605 """ 1606 imc = vtki.new("ImageCorrelation") 1607 imc.SetInput1Data(self.dataset) 1608 imc.SetInput2Data(vol2.dataset) 1609 imc.SetDimensionality(dim) 1610 imc.Update() 1611 vol = Volume(imc.GetOutput()) 1612 1613 vol.pipeline = utils.OperationNode("correlation_with", parents=[self, vol2], c="#4cc9f0") 1614 return vol 1615 1616 def scale_voxels(self, scale=1) -> Self: 1617 """Scale the voxel content by factor `scale`.""" 1618 rsl = vtki.new("ImageReslice") 1619 rsl.SetInputData(self.dataset) 1620 rsl.SetScalarScale(scale) 1621 rsl.Update() 1622 self._update(rsl.GetOutput()) 1623 self.pipeline = utils.OperationNode( 1624 "scale_voxels", comment=f"scale={scale}", parents=[self], c="#4cc9f0" 1625 ) 1626 return self
33class Volume(VolumeAlgorithms, VolumeVisual): 34 """ 35 Class to describe dataset that are defined on "voxels", 36 the 3D equivalent of 2D pixels. 37 """ 38 def __init__( 39 self, 40 input_obj=None, 41 dims=None, 42 origin=None, 43 spacing=None, 44 ) -> None: 45 """ 46 This class can be initialized with a numpy object, a `vtkImageData` or a list of 2D bmp files. 47 48 Arguments: 49 input_obj : (str, vtkImageData, np.ndarray) 50 input data can be a file name, a vtkImageData or a numpy object. 51 origin : (list) 52 set volume origin coordinates 53 spacing : (list) 54 voxel dimensions in x, y and z. 55 dims : (list) 56 specify the dimensions of the volume. 57 58 Note: 59 If your input is an array ordered as ZYX you can permute it to XYZ with: 60 `array = np.transpose(array, axes=[2, 1, 0])`. 61 Alternatively you can also use the `Volume(zyx_array).permute_axes(2,1,0)` method. 62 63 Example: 64 ```python 65 from vedo import Volume 66 vol = Volume("path/to/mydata/rec*.bmp") 67 vol.show() 68 ``` 69 70 Examples: 71 - [numpy2volume1.py](https://github.com/marcomusy/vedo/tree/master/examples/volumetric/numpy2volume1.py) 72 73 ![](https://vedo.embl.es/images/volumetric/numpy2volume1.png) 74 75 - [read_volume2.py](https://github.com/marcomusy/vedo/tree/master/examples/volumetric/read_volume2.py) 76 77 ![](https://vedo.embl.es/images/volumetric/read_volume2.png) 78 79 .. note:: 80 if a `list` of values is used for `alphas` this is interpreted 81 as a transfer function along the range of the scalar. 82 """ 83 super().__init__() 84 85 self.name = "Volume" 86 self.filename = "" 87 self.file_size = "" 88 89 self.info = {} 90 self.time = time.time() 91 92 self.actor = vtki.vtkVolume() 93 self.actor.retrieve_object = weak_ref_to(self) 94 self.properties = self.actor.GetProperty() 95 96 self.transform = None 97 self.point_locator = None 98 self.cell_locator = None 99 self.line_locator = None 100 101 ################### 102 if isinstance(input_obj, str): 103 if "https://" in input_obj: 104 input_obj = vedo.file_io.download(input_obj, verbose=False) # fpath 105 elif os.path.isfile(input_obj): 106 self.filename = input_obj 107 else: 108 input_obj = sorted(glob.glob(input_obj)) 109 110 ################### 111 inputtype = str(type(input_obj)) 112 113 # print('Volume inputtype', inputtype, c='b') 114 115 if input_obj is None: 116 img = vtki.vtkImageData() 117 118 elif utils.is_sequence(input_obj): 119 120 if isinstance(input_obj[0], str) and ".bmp" in input_obj[0].lower(): 121 # scan sequence of BMP files 122 ima = vtki.new("ImageAppend") 123 ima.SetAppendAxis(2) 124 pb = utils.ProgressBar(0, len(input_obj)) 125 for i in pb.range(): 126 f = input_obj[i] 127 if "_rec_spr" in f: # OPT specific 128 continue 129 picr = vtki.new("BMPReader") 130 picr.SetFileName(f) 131 picr.Update() 132 mgf = vtki.new("ImageMagnitude") 133 mgf.SetInputData(picr.GetOutput()) 134 mgf.Update() 135 ima.AddInputData(mgf.GetOutput()) 136 pb.print("loading...") 137 ima.Update() 138 img = ima.GetOutput() 139 140 else: 141 142 if len(input_obj.shape) == 1: 143 varr = utils.numpy2vtk(input_obj) 144 else: 145 varr = utils.numpy2vtk(input_obj.ravel(order="F")) 146 varr.SetName("input_scalars") 147 148 img = vtki.vtkImageData() 149 if dims is not None: 150 img.SetDimensions(dims[2], dims[1], dims[0]) 151 else: 152 if len(input_obj.shape) == 1: 153 vedo.logger.error("must set dimensions (dims keyword) in Volume") 154 raise RuntimeError() 155 img.SetDimensions(input_obj.shape) 156 img.GetPointData().AddArray(varr) 157 img.GetPointData().SetActiveScalars(varr.GetName()) 158 159 elif isinstance(input_obj, vtki.vtkImageData): 160 img = input_obj 161 162 elif isinstance(input_obj, str): 163 if "https://" in input_obj: 164 input_obj = vedo.file_io.download(input_obj, verbose=False) 165 img = vedo.file_io.loadImageData(input_obj) 166 self.filename = input_obj 167 168 else: 169 vedo.logger.error(f"cannot understand input type {inputtype}") 170 return 171 172 if dims is not None: 173 img.SetDimensions(dims) 174 175 if origin is not None: 176 img.SetOrigin(origin) 177 178 if spacing is not None: 179 img.SetSpacing(spacing) 180 181 self.dataset = img 182 self.transform = None 183 184 ##################################### 185 mapper = vtki.new("SmartVolumeMapper") 186 mapper.SetInputData(img) 187 self.actor.SetMapper(mapper) 188 189 if img.GetPointData().GetScalars(): 190 if img.GetPointData().GetScalars().GetNumberOfComponents() == 1: 191 self.properties.SetShade(True) 192 self.properties.SetInterpolationType(1) 193 self.cmap("RdBu_r") 194 self.alpha([0.0, 0.0, 0.2, 0.4, 0.8, 1.0]) 195 self.alpha_gradient(None) 196 self.properties.SetScalarOpacityUnitDistance(1.0) 197 198 self.pipeline = utils.OperationNode( 199 "Volume", comment=f"dims={tuple(self.dimensions())}", c="#4cc9f0" 200 ) 201 ####################################################################### 202 203 @property 204 def mapper(self): 205 """Return the underlying `vtkMapper` object.""" 206 return self.actor.GetMapper() 207 208 @mapper.setter 209 def mapper(self, mapper): 210 """ 211 Set the underlying `vtkMapper` object. 212 213 Arguments: 214 mapper : (str, vtkMapper) 215 either 'gpu', 'opengl_gpu', 'fixed' or 'smart' 216 """ 217 if isinstance(mapper, 218 (vtki.get_class("Mapper"), vtki.get_class("ImageResliceMapper")) 219 ): 220 pass 221 elif mapper is None: 222 mapper = vtki.new("SmartVolumeMapper") 223 elif "gpu" in mapper: 224 mapper = vtki.new("GPUVolumeRayCastMapper") 225 elif "opengl_gpu" in mapper: 226 mapper = vtki.new("OpenGLGPUVolumeRayCastMapper") 227 elif "smart" in mapper: 228 mapper = vtki.new("SmartVolumeMapper") 229 elif "fixed" in mapper: 230 mapper = vtki.new("FixedPointVolumeRayCastMapper") 231 else: 232 print("Error unknown mapper type", [mapper]) 233 raise RuntimeError() 234 mapper.SetInputData(self.dataset) 235 self.actor.SetMapper(mapper) 236 237 def c(self, *args, **kwargs) -> Self: 238 """Deprecated. Use `Volume.cmap()` instead.""" 239 vedo.logger.warning("Volume.c() is deprecated, use Volume.cmap() instead") 240 return self.cmap(*args, **kwargs) 241 242 def _update(self, data, reset_locators=False): 243 # reset_locators here is dummy 244 self.dataset = data 245 self.mapper.SetInputData(data) 246 self.dataset.GetPointData().Modified() 247 self.mapper.Modified() 248 self.mapper.Update() 249 return self 250 251 def __str__(self): 252 """Print a summary for the `Volume` object.""" 253 module = self.__class__.__module__ 254 name = self.__class__.__name__ 255 out = vedo.printc( 256 f"{module}.{name} at ({hex(self.memory_address())})".ljust(75), 257 c="c", bold=True, invert=True, return_string=True, 258 ) 259 out += "\x1b[0m\x1b[36;1m" 260 261 out+= "name".ljust(14) + ": " + str(self.name) + "\n" 262 if self.filename: 263 out+= "filename".ljust(14) + ": " + str(self.filename) + "\n" 264 265 out+= "dimensions".ljust(14) + ": " + str(self.shape) + "\n" 266 267 out+= "origin".ljust(14) + ": " 268 out+= utils.precision(self.origin(), 6) + "\n" 269 270 out+= "center".ljust(14) + ": " 271 out+= utils.precision(self.center(), 6) + "\n" 272 273 out+= "spacing".ljust(14) + ": " 274 out+= utils.precision(self.spacing(), 6) + "\n" 275 276 bnds = self.bounds() 277 bx1, bx2 = utils.precision(bnds[0], 3), utils.precision(bnds[1], 3) 278 by1, by2 = utils.precision(bnds[2], 3), utils.precision(bnds[3], 3) 279 bz1, bz2 = utils.precision(bnds[4], 3), utils.precision(bnds[5], 3) 280 out+= "bounds".ljust(14) + ":" 281 out+= " x=(" + bx1 + ", " + bx2 + ")," 282 out+= " y=(" + by1 + ", " + by2 + ")," 283 out+= " z=(" + bz1 + ", " + bz2 + ")\n" 284 285 out+= "memory size".ljust(14) + ": " 286 out+= str(int(self.dataset.GetActualMemorySize()/1024+0.5))+" MB\n" 287 288 st = self.dataset.GetScalarTypeAsString() 289 out+= "scalar size".ljust(14) + ": " 290 out+= str(self.dataset.GetScalarSize()) + f" bytes ({st})\n" 291 out+= "scalar range".ljust(14) + ": " 292 out+= str(self.dataset.GetScalarRange()) + "\n" 293 294 #utils.print_histogram(self, logscale=True, bins=8, height=15, c="b", bold=True) 295 return out.rstrip() + "\x1b[0m" 296 297 def _repr_html_(self): 298 """ 299 HTML representation of the Volume object for Jupyter Notebooks. 300 301 Returns: 302 HTML text with the image and some properties. 303 """ 304 import io 305 import base64 306 from PIL import Image 307 308 library_name = "vedo.volume.Volume" 309 help_url = "https://vedo.embl.es/docs/vedo/volume.html" 310 311 arr = self.thumbnail(azimuth=0, elevation=-60, zoom=1.4, axes=True) 312 313 im = Image.fromarray(arr) 314 buffered = io.BytesIO() 315 im.save(buffered, format="PNG", quality=100) 316 encoded = base64.b64encode(buffered.getvalue()).decode("utf-8") 317 url = "data:image/png;base64," + encoded 318 image = f"<img src='{url}'></img>" 319 320 # statisitics 321 bounds = "<br/>".join( 322 [ 323 utils.precision(min_x, 4) + " ... " + utils.precision(max_x, 4) 324 for min_x, max_x in zip(self.bounds()[::2], self.bounds()[1::2]) 325 ] 326 ) 327 328 help_text = "" 329 if self.name: 330 help_text += f"<b> {self.name}:   </b>" 331 help_text += '<b><a href="' + help_url + '" target="_blank">' + library_name + "</a></b>" 332 if self.filename: 333 dots = "" 334 if len(self.filename) > 30: 335 dots = "..." 336 help_text += f"<br/><code><i>({dots}{self.filename[-30:]})</i></code>" 337 338 pdata = "" 339 if self.dataset.GetPointData().GetScalars(): 340 if self.dataset.GetPointData().GetScalars().GetName(): 341 name = self.dataset.GetPointData().GetScalars().GetName() 342 pdata = "<tr><td><b> point data array </b></td><td>" + name + "</td></tr>" 343 344 cdata = "" 345 if self.dataset.GetCellData().GetScalars(): 346 if self.dataset.GetCellData().GetScalars().GetName(): 347 name = self.dataset.GetCellData().GetScalars().GetName() 348 cdata = "<tr><td><b> voxel data array </b></td><td>" + name + "</td></tr>" 349 350 img = self.dataset 351 352 allt = [ 353 "<table>", 354 "<tr>", 355 "<td>", 356 image, 357 "</td>", 358 "<td style='text-align: center; vertical-align: center;'><br/>", 359 help_text, 360 "<table>", 361 "<tr><td><b> bounds </b> <br/> (x/y/z) </td><td>" + str(bounds) + "</td></tr>", 362 "<tr><td><b> dimensions </b></td><td>" + str(img.GetDimensions()) + "</td></tr>", 363 "<tr><td><b> voxel spacing </b></td><td>" 364 + utils.precision(img.GetSpacing(), 3) 365 + "</td></tr>", 366 "<tr><td><b> in memory size </b></td><td>" 367 + str(int(img.GetActualMemorySize() / 1024)) 368 + "MB</td></tr>", 369 pdata, 370 cdata, 371 "<tr><td><b> scalar range </b></td><td>" 372 + utils.precision(img.GetScalarRange(), 4) 373 + "</td></tr>", 374 "</table>", 375 "</table>", 376 ] 377 return "\n".join(allt) 378 379 def copy(self, deep=True) -> "Volume": 380 """Return a copy of the Volume. Alias of `clone()`.""" 381 return self.clone(deep=deep) 382 383 def clone(self, deep=True) -> "Volume": 384 """Return a clone copy of the Volume. Alias of `copy()`.""" 385 if deep: 386 newimg = vtki.vtkImageData() 387 newimg.CopyStructure(self.dataset) 388 newimg.CopyAttributes(self.dataset) 389 newvol = Volume(newimg) 390 else: 391 newvol = Volume(self.dataset) 392 393 prop = vtki.vtkVolumeProperty() 394 prop.DeepCopy(self.properties) 395 newvol.actor.SetProperty(prop) 396 newvol.properties = prop 397 398 newvol.pipeline = utils.OperationNode("clone", parents=[self], c="#bbd0ff", shape="diamond") 399 return newvol 400 401 def astype(self, dtype: Union[str, int]) -> Self: 402 """ 403 Reset the type of the scalars array. 404 405 Arguments: 406 dtype : (str) 407 the type of the scalars array in 408 ["int8", "uint8", "int16", "uint16", "int32", "uint32", "float32", "float64"] 409 """ 410 if dtype in ["int8", "uint8", "int16", "uint16", "int32", "uint32", "float32", "float64"]: 411 caster = vtki.new("ImageCast") 412 caster.SetInputData(self.dataset) 413 caster.SetOutputScalarType(int(vtki.array_types[dtype])) 414 caster.ClampOverflowOn() 415 caster.Update() 416 self._update(caster.GetOutput()) 417 self.pipeline = utils.OperationNode(f"astype({dtype})", parents=[self], c="#4cc9f0") 418 else: 419 vedo.logger.error(f"astype(): unknown type {dtype}") 420 raise ValueError() 421 return self 422 423 def component_weight(self, i: int, weight: float) -> Self: 424 """Set the scalar component weight in range [0,1].""" 425 self.properties.SetComponentWeight(i, weight) 426 return self 427 428 def xslice(self, i: int) -> Mesh: 429 """Extract the slice at index `i` of volume along x-axis.""" 430 vslice = vtki.new("ImageDataGeometryFilter") 431 vslice.SetInputData(self.dataset) 432 nx, ny, nz = self.dataset.GetDimensions() 433 if i > nx - 1: 434 i = nx - 1 435 vslice.SetExtent(i, i, 0, ny, 0, nz) 436 vslice.Update() 437 m = Mesh(vslice.GetOutput()) 438 m.pipeline = utils.OperationNode(f"xslice {i}", parents=[self], c="#4cc9f0:#e9c46a") 439 return m 440 441 def yslice(self, j: int) -> Mesh: 442 """Extract the slice at index `j` of volume along y-axis.""" 443 vslice = vtki.new("ImageDataGeometryFilter") 444 vslice.SetInputData(self.dataset) 445 nx, ny, nz = self.dataset.GetDimensions() 446 if j > ny - 1: 447 j = ny - 1 448 vslice.SetExtent(0, nx, j, j, 0, nz) 449 vslice.Update() 450 m = Mesh(vslice.GetOutput()) 451 m.pipeline = utils.OperationNode(f"yslice {j}", parents=[self], c="#4cc9f0:#e9c46a") 452 return m 453 454 def zslice(self, k: int) -> Mesh: 455 """Extract the slice at index `i` of volume along z-axis.""" 456 vslice = vtki.new("ImageDataGeometryFilter") 457 vslice.SetInputData(self.dataset) 458 nx, ny, nz = self.dataset.GetDimensions() 459 if k > nz - 1: 460 k = nz - 1 461 vslice.SetExtent(0, nx, 0, ny, k, k) 462 vslice.Update() 463 m = Mesh(vslice.GetOutput()) 464 m.pipeline = utils.OperationNode(f"zslice {k}", parents=[self], c="#4cc9f0:#e9c46a") 465 return m 466 467 def slice_plane(self, origin: List[float], normal: List[float], autocrop=False, border=0.5, mode="linear") -> Mesh: 468 """ 469 Extract the slice along a given plane position and normal. 470 471 Two metadata arrays are added to the output Mesh: 472 - "shape" : contains the shape of the slice 473 - "original_bounds" : contains the original bounds of the slice 474 One can access them with e.g. `myslice.metadata["shape"]`. 475 476 Arguments: 477 origin : (list) 478 position of the plane 479 normal : (list) 480 normal to the plane 481 autocrop : (bool) 482 crop the output to the minimal possible size 483 border : (float) 484 add a border to the output slice 485 mode : (str) 486 interpolation mode, one of the following: "linear", "nearest", "cubic" 487 488 Example: 489 - [slice_plane1.py](https://github.com/marcomusy/vedo/tree/master/examples/volumetric/slice_plane1.py) 490 491 ![](https://vedo.embl.es/images/volumetric/slicePlane1.gif) 492 493 - [slice_plane2.py](https://github.com/marcomusy/vedo/tree/master/examples/volumetric/slice_plane2.py) 494 495 ![](https://vedo.embl.es/images/volumetric/slicePlane2.png) 496 497 - [slice_plane3.py](https://github.com/marcomusy/vedo/tree/master/examples/volumetric/slice_plane3.py) 498 499 ![](https://vedo.embl.es/images/volumetric/slicePlane3.jpg) 500 """ 501 newaxis = utils.versor(normal) 502 pos = np.array(origin) 503 initaxis = (0, 0, 1) 504 crossvec = np.cross(initaxis, newaxis) 505 angle = np.arccos(np.dot(initaxis, newaxis)) 506 T = vtki.vtkTransform() 507 T.PostMultiply() 508 T.RotateWXYZ(np.rad2deg(angle), crossvec.tolist()) 509 T.Translate(pos.tolist()) 510 511 reslice = vtki.new("ImageReslice") 512 reslice.SetResliceAxes(T.GetMatrix()) 513 reslice.SetInputData(self.dataset) 514 reslice.SetOutputDimensionality(2) 515 reslice.SetTransformInputSampling(True) 516 reslice.SetGenerateStencilOutput(False) 517 if border: 518 reslice.SetBorder(True) 519 reslice.SetBorderThickness(border) 520 else: 521 reslice.SetBorder(False) 522 if mode == "linear": 523 reslice.SetInterpolationModeToLinear() 524 elif mode == "nearest": 525 reslice.SetInterpolationModeToNearestNeighbor() 526 elif mode == "cubic": 527 reslice.SetInterpolationModeToCubic() 528 else: 529 vedo.logger.error(f"in slice_plane(): unknown interpolation mode {mode}") 530 raise ValueError() 531 reslice.SetAutoCropOutput(not autocrop) 532 reslice.Update() 533 img = reslice.GetOutput() 534 535 vslice = vtki.new("ImageDataGeometryFilter") 536 vslice.SetInputData(img) 537 vslice.Update() 538 539 msh = Mesh(vslice.GetOutput()).apply_transform(T) 540 msh.properties.LightingOff() 541 542 d0, d1, _ = img.GetDimensions() 543 varr1 = utils.numpy2vtk([d1, d0], name="shape") 544 varr2 = utils.numpy2vtk(img.GetBounds(), name="original_bounds") 545 msh.dataset.GetFieldData().AddArray(varr1) 546 msh.dataset.GetFieldData().AddArray(varr2) 547 msh.pipeline = utils.OperationNode("slice_plane", parents=[self], c="#4cc9f0:#e9c46a") 548 return msh 549 550 def slab(self, slice_range=(), axis='z', operation="mean") -> Mesh: 551 """ 552 Extract a slab from a `Volume` by combining 553 all of the slices of an image to create a single slice. 554 555 Returns a `Mesh` containing metadata which 556 can be accessed with e.g. `mesh.metadata["slab_range"]`. 557 558 Metadata: 559 slab_range : (list) 560 contains the range of slices extracted 561 slab_axis : (str) 562 contains the axis along which the slab was extracted 563 slab_operation : (str) 564 contains the operation performed on the slab 565 slab_bounding_box : (list) 566 contains the bounding box of the slab 567 568 Arguments: 569 slice_range : (list) 570 range of slices to extract 571 axis : (str) 572 axis along which to extract the slab 573 operation : (str) 574 operation to perform on the slab, 575 allowed values are: "sum", "min", "max", "mean". 576 577 Example: 578 - [slab.py](https://github.com/marcomusy/vedo/blob/master/examples/volumetric/slab_vol.py) 579 580 ![](https://vedo.embl.es/images/volumetric/slab_vol.jpg) 581 """ 582 if len(slice_range) != 2: 583 vedo.logger.error("in slab(): slice_range is empty or invalid") 584 raise ValueError() 585 586 islab = vtki.new("ImageSlab") 587 islab.SetInputData(self.dataset) 588 589 if operation in ["+", "add", "sum"]: 590 islab.SetOperationToSum() 591 elif "min" in operation: 592 islab.SetOperationToMin() 593 elif "max" in operation: 594 islab.SetOperationToMax() 595 elif "mean" in operation: 596 islab.SetOperationToMean() 597 else: 598 vedo.logger.error(f"in slab(): unknown operation {operation}") 599 raise ValueError() 600 601 dims = self.dimensions() 602 if axis == 'x': 603 islab.SetOrientationToX() 604 if slice_range[0] > dims[0]-1: 605 slice_range[0] = dims[0]-1 606 if slice_range[1] > dims[0]-1: 607 slice_range[1] = dims[0]-1 608 elif axis == 'y': 609 islab.SetOrientationToY() 610 if slice_range[0] > dims[1]-1: 611 slice_range[0] = dims[1]-1 612 if slice_range[1] > dims[1]-1: 613 slice_range[1] = dims[1]-1 614 elif axis == 'z': 615 islab.SetOrientationToZ() 616 if slice_range[0] > dims[2]-1: 617 slice_range[0] = dims[2]-1 618 if slice_range[1] > dims[2]-1: 619 slice_range[1] = dims[2]-1 620 else: 621 vedo.logger.error(f"Error in slab(): unknown axis {axis}") 622 raise RuntimeError() 623 624 islab.SetSliceRange(slice_range) 625 islab.Update() 626 627 msh = Mesh(islab.GetOutput()).lighting('off') 628 msh.mapper.SetLookupTable(utils.ctf2lut(self, msh)) 629 msh.mapper.SetScalarRange(self.scalar_range()) 630 631 msh.metadata["slab_range"] = slice_range 632 msh.metadata["slab_axis"] = axis 633 msh.metadata["slab_operation"] = operation 634 635 # compute bounds of slab 636 origin = list(self.origin()) 637 spacing = list(self.spacing()) 638 if axis == 'x': 639 msh.metadata["slab_bounding_box"] = [ 640 origin[0] + slice_range[0]*spacing[0], 641 origin[0] + slice_range[1]*spacing[0], 642 origin[1], 643 origin[1] + dims[1]*spacing[1], 644 origin[2], 645 origin[2] + dims[2]*spacing[2], 646 ] 647 elif axis == 'y': 648 msh.metadata["slab_bounding_box"] = [ 649 origin[0], 650 origin[0] + dims[0]*spacing[0], 651 origin[1] + slice_range[0]*spacing[1], 652 origin[1] + slice_range[1]*spacing[1], 653 origin[2], 654 origin[2] + dims[2]*spacing[2], 655 ] 656 elif axis == 'z': 657 msh.metadata["slab_bounding_box"] = [ 658 origin[0], 659 origin[0] + dims[0]*spacing[0], 660 origin[1], 661 origin[1] + dims[1]*spacing[1], 662 origin[2] + slice_range[0]*spacing[2], 663 origin[2] + slice_range[1]*spacing[2], 664 ] 665 666 msh.pipeline = utils.OperationNode( 667 f"slab{slice_range}", 668 comment=f"axis={axis}, operation={operation}", 669 parents=[self], 670 c="#4cc9f0:#e9c46a", 671 ) 672 msh.name = "SlabMesh" 673 return msh 674 675 676 def warp( 677 self, 678 source: Union["vedo.Points", List], 679 target: Union["vedo.Points", List], 680 sigma=1, mode="3d", fit=True, 681 ) -> Self: 682 """ 683 Warp volume scalars within a Volume by specifying 684 source and target sets of points. 685 686 Arguments: 687 source : (Points, list) 688 the list of source points 689 target : (Points, list) 690 the list of target points 691 fit : (bool) 692 fit/adapt the old bounding box to the warped geometry 693 """ 694 if isinstance(source, vedo.Points): 695 source = source.vertices 696 if isinstance(target, vedo.Points): 697 target = target.vertices 698 699 NLT = transformations.NonLinearTransform() 700 NLT.source_points = source 701 NLT.target_points = target 702 NLT.sigma = sigma 703 NLT.mode = mode 704 705 self.apply_transform(NLT, fit=fit) 706 self.pipeline = utils.OperationNode("warp", parents=[self], c="#4cc9f0") 707 return self 708 709 def apply_transform( 710 self, 711 T: Union[transformations.LinearTransform, transformations.NonLinearTransform], 712 fit=True, interpolation="cubic", 713 ) -> Self: 714 """ 715 Apply a transform to the scalars in the volume. 716 717 Arguments: 718 T : (LinearTransform, NonLinearTransform) 719 The transformation to be applied 720 fit : (bool) 721 fit/adapt the old bounding box to the modified geometry 722 interpolation : (str) 723 one of the following: "nearest", "linear", "cubic" 724 """ 725 if utils.is_sequence(T): 726 T = transformations.LinearTransform(T) 727 728 TI = T.compute_inverse() 729 730 reslice = vtki.new("ImageReslice") 731 reslice.SetInputData(self.dataset) 732 reslice.SetResliceTransform(TI.T) 733 reslice.SetOutputDimensionality(3) 734 if "lin" in interpolation.lower(): 735 reslice.SetInterpolationModeToLinear() 736 elif "near" in interpolation.lower(): 737 reslice.SetInterpolationModeToNearestNeighbor() 738 elif "cubic" in interpolation.lower(): 739 reslice.SetInterpolationModeToCubic() 740 else: 741 vedo.logger.error( 742 f"in apply_transform: unknown interpolation mode {interpolation}") 743 raise ValueError() 744 reslice.SetAutoCropOutput(fit) 745 reslice.Update() 746 self._update(reslice.GetOutput()) 747 self.transform = T 748 self.pipeline = utils.OperationNode( 749 "apply_transform", parents=[self], c="#4cc9f0") 750 return self 751 752 def imagedata(self) -> vtki.vtkImageData: 753 """ 754 DEPRECATED: 755 Use `Volume.dataset` instead. 756 757 Return the underlying `vtkImagaData` object. 758 """ 759 print("Volume.imagedata() is deprecated, use Volume.dataset instead") 760 return self.dataset 761 762 def modified(self) -> Self: 763 """ 764 Mark the object as modified. 765 766 Example: 767 768 - [numpy2volume0.py](https://github.com/marcomusy/vedo/tree/master/examples/volumetric/numpy2volume0.py) 769 """ 770 scals = self.dataset.GetPointData().GetScalars() 771 if scals: 772 scals.Modified() 773 return self 774 775 def tonumpy(self) -> np.ndarray: 776 """ 777 Get read-write access to voxels of a Volume object as a numpy array. 778 779 When you set values in the output image, you don't want numpy to reallocate the array 780 but instead set values in the existing array, so use the [:] operator. 781 782 Example: 783 `arr[:] = arr*2 + 15` 784 785 If the array is modified add a call to: 786 `volume.modified()` 787 when all your modifications are completed. 788 """ 789 narray_shape = tuple(reversed(self.dataset.GetDimensions())) 790 791 scals = self.dataset.GetPointData().GetScalars() 792 comps = scals.GetNumberOfComponents() 793 if comps == 1: 794 narray = utils.vtk2numpy(scals).reshape(narray_shape) 795 narray = np.transpose(narray, axes=[2, 1, 0]) 796 else: 797 narray = utils.vtk2numpy(scals).reshape(*narray_shape, comps) 798 narray = np.transpose(narray, axes=[2, 1, 0, 3]) 799 800 # narray = utils.vtk2numpy(self.dataset.GetPointData().GetScalars()).reshape(narray_shape) 801 # narray = np.transpose(narray, axes=[2, 1, 0]) 802 return narray 803 804 @property 805 def shape(self) -> np.ndarray: 806 """Return the nr. of voxels in the 3 dimensions.""" 807 return np.array(self.dataset.GetDimensions()) 808 809 def dimensions(self) -> np.ndarray: 810 """Return the nr. of voxels in the 3 dimensions.""" 811 return np.array(self.dataset.GetDimensions()) 812 813 def scalar_range(self) -> np.ndarray: 814 """Return the range of the scalar values.""" 815 return np.array(self.dataset.GetScalarRange()) 816 817 def spacing(self, s=None) -> Union[Self, Iterable[float]]: 818 """Set/get the voxels size in the 3 dimensions.""" 819 if s is not None: 820 self.dataset.SetSpacing(s) 821 return self 822 return np.array(self.dataset.GetSpacing()) 823 824 def origin(self, s=None) -> Union[Self, Iterable[float]]: 825 """ 826 Set/get the origin of the volumetric dataset. 827 828 The origin is the position in world coordinates of the point index (0,0,0). 829 This point does not have to be part of the dataset, in other words, 830 the dataset extent does not have to start at (0,0,0) and the origin 831 can be outside of the dataset bounding box. 832 The origin plus spacing determine the position in space of the points. 833 """ 834 if s is not None: 835 self.dataset.SetOrigin(s) 836 return self 837 return np.array(self.dataset.GetOrigin()) 838 839 def pos(self, p=None) -> Union[Self, Iterable[float]]: 840 """Set/get the position of the volumetric dataset.""" 841 if p is not None: 842 self.origin(p) 843 return self 844 return self.origin() 845 846 def center(self) -> np.ndarray: 847 """Get the center of the volumetric dataset.""" 848 # note that this does not have the set method like origin and spacing 849 return np.array(self.dataset.GetCenter()) 850 851 def shift(self, s: list) -> Self: 852 """Shift the volumetric dataset by a vector.""" 853 self.origin(self.origin() + np.array(s)) 854 return self 855 856 def rotate_x(self, angle: float, rad=False, around=None) -> Self: 857 """ 858 Rotate around x-axis. If angle is in radians set `rad=True`. 859 860 Use `around` to define a pivoting point. 861 """ 862 if angle == 0: 863 return self 864 LT = transformations.LinearTransform().rotate_x(angle, rad, around) 865 return self.apply_transform(LT, fit=True, interpolation="linear") 866 867 def rotate_y(self, angle: float, rad=False, around=None) -> Self: 868 """ 869 Rotate around y-axis. If angle is in radians set `rad=True`. 870 871 Use `around` to define a pivoting point. 872 """ 873 if angle == 0: 874 return self 875 LT = transformations.LinearTransform().rotate_y(angle, rad, around) 876 return self.apply_transform(LT, fit=True, interpolation="linear") 877 878 def rotate_z(self, angle: float, rad=False, around=None) -> Self: 879 """ 880 Rotate around z-axis. If angle is in radians set `rad=True`. 881 882 Use `around` to define a pivoting point. 883 """ 884 if angle == 0: 885 return self 886 LT = transformations.LinearTransform().rotate_z(angle, rad, around) 887 return self.apply_transform(LT, fit=True, interpolation="linear") 888 889 def get_cell_from_ijk(self, ijk: list) -> int: 890 """ 891 Get the voxel id number at the given ijk coordinates. 892 893 Arguments: 894 ijk : (list) 895 the ijk coordinates of the voxel 896 """ 897 return self.dataset.ComputeCellId(ijk) 898 899 def get_point_from_ijk(self, ijk: list) -> int: 900 """ 901 Get the point id number at the given ijk coordinates. 902 903 Arguments: 904 ijk : (list) 905 the ijk coordinates of the voxel 906 """ 907 return self.dataset.ComputePointId(ijk) 908 909 def permute_axes(self, x: int, y: int, z: int) -> Self: 910 """ 911 Reorder the axes of the Volume by specifying 912 the input axes which are supposed to become the new X, Y, and Z. 913 """ 914 imp = vtki.new("ImagePermute") 915 imp.SetFilteredAxes(x, y, z) 916 imp.SetInputData(self.dataset) 917 imp.Update() 918 self._update(imp.GetOutput()) 919 self.pipeline = utils.OperationNode( 920 f"permute_axes({(x,y,z)})", parents=[self], c="#4cc9f0" 921 ) 922 return self 923 924 def resample(self, new_spacing: List[float], interpolation=1) -> Self: 925 """ 926 Resamples a `Volume` to be larger or smaller. 927 928 This method modifies the spacing of the input. 929 Linear interpolation is used to resample the data. 930 931 Arguments: 932 new_spacing : (list) 933 a list of 3 new spacings for the 3 axes 934 interpolation : (int) 935 0=nearest_neighbor, 1=linear, 2=cubic 936 """ 937 rsp = vtki.new("ImageResample") 938 oldsp = self.spacing() 939 for i in range(3): 940 if oldsp[i] != new_spacing[i]: 941 rsp.SetAxisOutputSpacing(i, new_spacing[i]) 942 rsp.InterpolateOn() 943 rsp.SetInterpolationMode(interpolation) 944 rsp.OptimizationOn() 945 rsp.Update() 946 self._update(rsp.GetOutput()) 947 self.pipeline = utils.OperationNode( 948 "resample", comment=f"spacing: {tuple(new_spacing)}", parents=[self], c="#4cc9f0" 949 ) 950 return self 951 952 953 def threshold(self, above=None, below=None, replace=None, replace_value=None) -> Self: 954 """ 955 Binary or continuous volume thresholding. 956 Find the voxels that contain a value above/below the input values 957 and replace them with a new value (default is 0). 958 """ 959 th = vtki.new("ImageThreshold") 960 th.SetInputData(self.dataset) 961 962 # sanity checks 963 if above is not None and below is not None: 964 if above == below: 965 return self 966 if above > below: 967 vedo.logger.warning("in volume.threshold(), above > below, skip.") 968 return self 969 970 ## cases 971 if below is not None and above is not None: 972 th.ThresholdBetween(above, below) 973 974 elif above is not None: 975 th.ThresholdByUpper(above) 976 977 elif below is not None: 978 th.ThresholdByLower(below) 979 980 ## 981 if replace is not None: 982 th.SetReplaceIn(True) 983 th.SetInValue(replace) 984 else: 985 th.SetReplaceIn(False) 986 987 if replace_value is not None: 988 th.SetReplaceOut(True) 989 th.SetOutValue(replace_value) 990 else: 991 th.SetReplaceOut(False) 992 993 th.Update() 994 self._update(th.GetOutput()) 995 self.pipeline = utils.OperationNode("threshold", parents=[self], c="#4cc9f0") 996 return self 997 998 def crop(self, left=None, right=None, back=None, front=None, bottom=None, top=None, VOI=()) -> Self: 999 """ 1000 Crop a `Volume` object. 1001 1002 Arguments: 1003 left : (float) 1004 fraction to crop from the left plane (negative x) 1005 right : (float) 1006 fraction to crop from the right plane (positive x) 1007 back : (float) 1008 fraction to crop from the back plane (negative y) 1009 front : (float) 1010 fraction to crop from the front plane (positive y) 1011 bottom : (float) 1012 fraction to crop from the bottom plane (negative z) 1013 top : (float) 1014 fraction to crop from the top plane (positive z) 1015 VOI : (list) 1016 extract Volume Of Interest expressed in voxel numbers 1017 1018 Example: 1019 `vol.crop(VOI=(xmin, xmax, ymin, ymax, zmin, zmax)) # all integers nrs` 1020 """ 1021 extractVOI = vtki.new("ExtractVOI") 1022 extractVOI.SetInputData(self.dataset) 1023 1024 if VOI: 1025 extractVOI.SetVOI(VOI) 1026 else: 1027 d = self.dataset.GetDimensions() 1028 bx0, bx1, by0, by1, bz0, bz1 = 0, d[0]-1, 0, d[1]-1, 0, d[2]-1 1029 if left is not None: bx0 = int((d[0]-1)*left) 1030 if right is not None: bx1 = int((d[0]-1)*(1-right)) 1031 if back is not None: by0 = int((d[1]-1)*back) 1032 if front is not None: by1 = int((d[1]-1)*(1-front)) 1033 if bottom is not None: bz0 = int((d[2]-1)*bottom) 1034 if top is not None: bz1 = int((d[2]-1)*(1-top)) 1035 extractVOI.SetVOI(bx0, bx1, by0, by1, bz0, bz1) 1036 extractVOI.Update() 1037 self._update(extractVOI.GetOutput()) 1038 1039 self.pipeline = utils.OperationNode( 1040 "crop", parents=[self], c="#4cc9f0", comment=f"dims={tuple(self.dimensions())}" 1041 ) 1042 return self 1043 1044 def append(self, *volumes, axis="z", preserve_extents=False) -> Self: 1045 """ 1046 Take the components from multiple inputs and merges them into one output. 1047 Except for the append axis, all inputs must have the same extent. 1048 All inputs must have the same number of scalar components. 1049 The output has the same origin and spacing as the first input. 1050 The origin and spacing of all other inputs are ignored. 1051 All inputs must have the same scalar type. 1052 1053 Arguments: 1054 axis : (int, str) 1055 axis expanded to hold the multiple images 1056 preserve_extents : (bool) 1057 if True, the extent of the inputs is used to place 1058 the image in the output. The whole extent of the output is the union of the input 1059 whole extents. Any portion of the output not covered by the inputs is set to zero. 1060 The origin and spacing is taken from the first input. 1061 1062 Example: 1063 ```python 1064 from vedo import Volume, dataurl 1065 vol = Volume(dataurl+'embryo.tif') 1066 vol.append(vol, axis='x').show().close() 1067 ``` 1068 ![](https://vedo.embl.es/images/feats/volume_append.png) 1069 """ 1070 ima = vtki.new("ImageAppend") 1071 ima.SetInputData(self.dataset) 1072 # if not utils.is_sequence(volumes): 1073 # volumes = [volumes] 1074 for volume in volumes: 1075 if isinstance(volume, vtki.vtkImageData): 1076 ima.AddInputData(volume) 1077 else: 1078 ima.AddInputData(volume.dataset) 1079 ima.SetPreserveExtents(preserve_extents) 1080 if axis == "x": 1081 axis = 0 1082 elif axis == "y": 1083 axis = 1 1084 elif axis == "z": 1085 axis = 2 1086 ima.SetAppendAxis(axis) 1087 ima.Update() 1088 self._update(ima.GetOutput()) 1089 1090 self.pipeline = utils.OperationNode( 1091 "append", 1092 parents=[self, *volumes], 1093 c="#4cc9f0", 1094 comment=f"dims={tuple(self.dimensions())}", 1095 ) 1096 return self 1097 1098 def pad(self, voxels=10, value=0) -> Self: 1099 """ 1100 Add the specified number of voxels at the `Volume` borders. 1101 Voxels can be a list formatted as `[nx0, nx1, ny0, ny1, nz0, nz1]`. 1102 1103 Arguments: 1104 voxels : (int, list) 1105 number of voxels to be added (or a list of length 4) 1106 value : (int) 1107 intensity value (gray-scale color) of the padding 1108 1109 Example: 1110 ```python 1111 from vedo import Volume, dataurl, show 1112 iso = Volume(dataurl+'embryo.tif').isosurface() 1113 vol = iso.binarize(spacing=(100, 100, 100)).pad(10) 1114 vol.dilate([15,15,15]) 1115 show(iso, vol.isosurface(), N=2, axes=1) 1116 ``` 1117 ![](https://vedo.embl.es/images/volumetric/volume_pad.png) 1118 """ 1119 x0, x1, y0, y1, z0, z1 = self.dataset.GetExtent() 1120 pf = vtki.new("ImageConstantPad") 1121 pf.SetInputData(self.dataset) 1122 pf.SetConstant(value) 1123 if utils.is_sequence(voxels): 1124 pf.SetOutputWholeExtent( 1125 x0 - voxels[0], x1 + voxels[1], 1126 y0 - voxels[2], y1 + voxels[3], 1127 z0 - voxels[4], z1 + voxels[5], 1128 ) 1129 else: 1130 pf.SetOutputWholeExtent( 1131 x0 - voxels, x1 + voxels, 1132 y0 - voxels, y1 + voxels, 1133 z0 - voxels, z1 + voxels, 1134 ) 1135 pf.Update() 1136 self._update(pf.GetOutput()) 1137 self.pipeline = utils.OperationNode( 1138 "pad", comment=f"{voxels} voxels", parents=[self], c="#f28482" 1139 ) 1140 return self 1141 1142 def resize(self, newdims: List[int]) -> Self: 1143 """Increase or reduce the number of voxels of a Volume with interpolation.""" 1144 rsz = vtki.new("ImageResize") 1145 rsz.SetResizeMethodToOutputDimensions() 1146 rsz.SetInputData(self.dataset) 1147 rsz.SetOutputDimensions(newdims) 1148 rsz.Update() 1149 self.dataset = rsz.GetOutput() 1150 self._update(self.dataset) 1151 self.pipeline = utils.OperationNode( 1152 "resize", parents=[self], c="#4cc9f0", comment=f"dims={tuple(self.dimensions())}" 1153 ) 1154 return self 1155 1156 def normalize(self) -> Self: 1157 """Normalize that scalar components for each point.""" 1158 norm = vtki.new("ImageNormalize") 1159 norm.SetInputData(self.dataset) 1160 norm.Update() 1161 self._update(norm.GetOutput()) 1162 self.pipeline = utils.OperationNode("normalize", parents=[self], c="#4cc9f0") 1163 return self 1164 1165 def mirror(self, axis="x") -> Self: 1166 """ 1167 Mirror flip along one of the cartesian axes. 1168 """ 1169 img = self.dataset 1170 1171 ff = vtki.new("ImageFlip") 1172 ff.SetInputData(img) 1173 if axis.lower() == "x": 1174 ff.SetFilteredAxis(0) 1175 elif axis.lower() == "y": 1176 ff.SetFilteredAxis(1) 1177 elif axis.lower() == "z": 1178 ff.SetFilteredAxis(2) 1179 else: 1180 vedo.logger.error("mirror must be set to either x, y, z or n") 1181 raise RuntimeError() 1182 ff.Update() 1183 self._update(ff.GetOutput()) 1184 self.pipeline = utils.OperationNode(f"mirror {axis}", parents=[self], c="#4cc9f0") 1185 return self 1186 1187 def operation(self, operation: str, volume2=None) -> "Volume": 1188 """ 1189 Perform operations with `Volume` objects. 1190 Keyword `volume2` can be a constant `float`. 1191 1192 Possible operations are: 1193 ``` 1194 and, or, xor, nand, nor, not, 1195 +, -, /, 1/x, sin, cos, exp, log, 1196 abs, **2, sqrt, min, max, atan, atan2, median, 1197 mag, dot, gradient, divergence, laplacian. 1198 ``` 1199 1200 Example: 1201 ```py 1202 from vedo import Box, show 1203 vol1 = Box(size=(35,10, 5)).binarize() 1204 vol2 = Box(size=( 5,10,35)).binarize() 1205 vol = vol1.operation("xor", vol2) 1206 show([[vol1, vol2], 1207 ["vol1 xor vol2", vol]], 1208 N=2, axes=1, viewup="z", 1209 ).close() 1210 ``` 1211 1212 Note: 1213 For logic operations, the two volumes must have the same bounds. 1214 If they do not, a larger image is created to contain both and the 1215 volumes are resampled onto the larger image before the operation is 1216 performed. This can be slow and memory intensive. 1217 1218 See also: 1219 - [volume_operations.py](https://github.com/marcomusy/vedo/tree/master/examples/volumetric/volume_operations.py) 1220 """ 1221 op = operation.lower() 1222 image1 = self.dataset 1223 1224 if op in ["and", "or", "xor", "nand", "nor"]: 1225 1226 if not np.allclose(image1.GetBounds(), volume2.dataset.GetBounds()): 1227 # create a larger image to contain both 1228 b1 = image1.GetBounds() 1229 b2 = volume2.dataset.GetBounds() 1230 b = [ 1231 min(b1[0], b2[0]), 1232 max(b1[1], b2[1]), 1233 min(b1[2], b2[2]), 1234 max(b1[3], b2[3]), 1235 min(b1[4], b2[4]), 1236 max(b1[5], b2[5]), 1237 ] 1238 dims1 = image1.GetDimensions() 1239 dims2 = volume2.dataset.GetDimensions() 1240 dims = [max(dims1[0], dims2[0]), max(dims1[1], dims2[1]), max(dims1[2], dims2[2])] 1241 1242 image = vtki.vtkImageData() 1243 image.SetDimensions(dims) 1244 spacing = ( 1245 (b[1] - b[0]) / dims[0], 1246 (b[3] - b[2]) / dims[1], 1247 (b[5] - b[4]) / dims[2], 1248 ) 1249 image.SetSpacing(spacing) 1250 image.SetOrigin((b[0], b[2], b[4])) 1251 image.AllocateScalars(vtki.VTK_UNSIGNED_CHAR, 1) 1252 image.GetPointData().GetScalars().FillComponent(0, 0) 1253 1254 interp1 = vtki.new("ImageReslice") 1255 interp1.SetInputData(image1) 1256 interp1.SetOutputExtent(image.GetExtent()) 1257 interp1.SetOutputOrigin(image.GetOrigin()) 1258 interp1.SetOutputSpacing(image.GetSpacing()) 1259 interp1.SetInterpolationModeToNearestNeighbor() 1260 interp1.Update() 1261 imageA = interp1.GetOutput() 1262 1263 interp2 = vtki.new("ImageReslice") 1264 interp2.SetInputData(volume2.dataset) 1265 interp2.SetOutputExtent(image.GetExtent()) 1266 interp2.SetOutputOrigin(image.GetOrigin()) 1267 interp2.SetOutputSpacing(image.GetSpacing()) 1268 interp2.SetInterpolationModeToNearestNeighbor() 1269 interp2.Update() 1270 imageB = interp2.GetOutput() 1271 1272 else: 1273 imageA = image1 1274 imageB = volume2.dataset 1275 1276 img_logic = vtki.new("ImageLogic") 1277 img_logic.SetInput1Data(imageA) 1278 img_logic.SetInput2Data(imageB) 1279 img_logic.SetOperation(["and", "or", "xor", "nand", "nor"].index(op)) 1280 img_logic.Update() 1281 1282 out_vol = Volume(img_logic.GetOutput()) 1283 out_vol.pipeline = utils.OperationNode( 1284 "operation", comment=f"{op}", parents=[self, volume2], c="#4cc9f0", shape="cylinder" 1285 ) 1286 return out_vol ###################################################### 1287 1288 if volume2 and isinstance(volume2, Volume): 1289 # assert image1.GetScalarType() == volume2.dataset.GetScalarType(), "volumes have different scalar types" 1290 # make sure they have the same bounds: 1291 assert np.allclose(image1.GetBounds(), volume2.dataset.GetBounds()), "volumes have different bounds" 1292 # make sure they have the same spacing: 1293 assert np.allclose(image1.GetSpacing(), volume2.dataset.GetSpacing()), "volumes have different spacing" 1294 # make sure they have the same origin: 1295 assert np.allclose(image1.GetOrigin(), volume2.dataset.GetOrigin()), "volumes have different origin" 1296 1297 mf = None 1298 if op in ["median"]: 1299 mf = vtki.new("ImageMedian3D") 1300 mf.SetInputData(image1) 1301 elif op in ["mag"]: 1302 mf = vtki.new("ImageMagnitude") 1303 mf.SetInputData(image1) 1304 elif op in ["dot"]: 1305 mf = vtki.new("ImageDotProduct") 1306 mf.SetInput1Data(image1) 1307 mf.SetInput2Data(volume2.dataset) 1308 elif op in ["grad", "gradient"]: 1309 mf = vtki.new("ImageGradient") 1310 mf.SetDimensionality(3) 1311 mf.SetInputData(image1) 1312 elif op in ["div", "divergence"]: 1313 mf = vtki.new("ImageDivergence") 1314 mf.SetInputData(image1) 1315 elif op in ["laplacian"]: 1316 mf = vtki.new("ImageLaplacian") 1317 mf.SetDimensionality(3) 1318 mf.SetInputData(image1) 1319 elif op in ["not"]: 1320 mf = vtki.new("ImageLogic") 1321 mf.SetInput1Data(image1) 1322 mf.SetOperation(4) 1323 1324 if mf is not None: 1325 mf.Update() 1326 vol = Volume(mf.GetOutput()) 1327 vol.pipeline = utils.OperationNode( 1328 "operation", comment=f"{op}", parents=[self], c="#4cc9f0", shape="cylinder" 1329 ) 1330 return vol ###################################################### 1331 1332 mat = vtki.new("ImageMathematics") 1333 mat.SetInput1Data(image1) 1334 1335 K = None 1336 1337 if utils.is_number(volume2): 1338 K = volume2 1339 mat.SetConstantK(K) 1340 mat.SetConstantC(K) 1341 1342 elif volume2 is not None: # assume image2 is a constant value 1343 mat.SetInput2Data(volume2.dataset) 1344 1345 # ########################### 1346 if op in ["+", "add", "plus"]: 1347 if K: 1348 mat.SetOperationToAddConstant() 1349 else: 1350 mat.SetOperationToAdd() 1351 1352 elif op in ["-", "subtract", "minus"]: 1353 if K: 1354 mat.SetConstantC(-float(K)) 1355 mat.SetOperationToAddConstant() 1356 else: 1357 mat.SetOperationToSubtract() 1358 1359 elif op in ["*", "multiply", "times"]: 1360 if K: 1361 mat.SetOperationToMultiplyByK() 1362 else: 1363 mat.SetOperationToMultiply() 1364 1365 elif op in ["/", "divide"]: 1366 if K: 1367 mat.SetConstantK(1.0 / K) 1368 mat.SetOperationToMultiplyByK() 1369 else: 1370 mat.SetOperationToDivide() 1371 1372 elif op in ["1/x", "invert"]: 1373 mat.SetOperationToInvert() 1374 elif op in ["sin"]: 1375 mat.SetOperationToSin() 1376 elif op in ["cos"]: 1377 mat.SetOperationToCos() 1378 elif op in ["exp"]: 1379 mat.SetOperationToExp() 1380 elif op in ["log"]: 1381 mat.SetOperationToLog() 1382 elif op in ["abs"]: 1383 mat.SetOperationToAbsoluteValue() 1384 elif op in ["**2", "square"]: 1385 mat.SetOperationToSquare() 1386 elif op in ["sqrt", "sqr"]: 1387 mat.SetOperationToSquareRoot() 1388 elif op in ["min"]: 1389 mat.SetOperationToMin() 1390 elif op in ["max"]: 1391 mat.SetOperationToMax() 1392 elif op in ["atan"]: 1393 mat.SetOperationToATAN() 1394 elif op in ["atan2"]: 1395 mat.SetOperationToATAN2() 1396 else: 1397 vedo.logger.error(f"unknown operation {operation}") 1398 raise RuntimeError() 1399 mat.Update() 1400 1401 self._update(mat.GetOutput()) 1402 1403 self.pipeline = utils.OperationNode( 1404 "operation", comment=f"{op}", parents=[self, volume2], shape="cylinder", c="#4cc9f0" 1405 ) 1406 return self 1407 1408 def frequency_pass_filter(self, low_cutoff=None, high_cutoff=None, order=1) -> Self: 1409 """ 1410 Low-pass and high-pass filtering become trivial in the frequency domain. 1411 A portion of the pixels/voxels are simply masked or attenuated. 1412 This function applies a high pass Butterworth filter that attenuates the 1413 frequency domain image. 1414 1415 The gradual attenuation of the filter is important. 1416 A simple high-pass filter would simply mask a set of pixels in the frequency domain, 1417 but the abrupt transition would cause a ringing effect in the spatial domain. 1418 1419 Arguments: 1420 low_cutoff : (list) 1421 the cutoff frequencies for x, y and z 1422 high_cutoff : (list) 1423 the cutoff frequencies for x, y and z 1424 order : (int) 1425 order determines sharpness of the cutoff curve 1426 """ 1427 # https://lorensen.github.io/VTKExamples/site/Cxx/ImageProcessing/IdealHighPass 1428 fft = vtki.new("ImageFFT") 1429 fft.SetInputData(self.dataset) 1430 fft.Update() 1431 out = fft.GetOutput() 1432 1433 if high_cutoff: 1434 blp = vtki.new("ImageButterworthLowPass") 1435 blp.SetInputData(out) 1436 blp.SetCutOff(high_cutoff) 1437 blp.SetOrder(order) 1438 blp.Update() 1439 out = blp.GetOutput() 1440 1441 if low_cutoff: 1442 bhp = vtki.new("ImageButterworthHighPass") 1443 bhp.SetInputData(out) 1444 bhp.SetCutOff(low_cutoff) 1445 bhp.SetOrder(order) 1446 bhp.Update() 1447 out = bhp.GetOutput() 1448 1449 rfft = vtki.new("ImageRFFT") 1450 rfft.SetInputData(out) 1451 rfft.Update() 1452 1453 ecomp = vtki.new("ImageExtractComponents") 1454 ecomp.SetInputData(rfft.GetOutput()) 1455 ecomp.SetComponents(0) 1456 ecomp.Update() 1457 self._update(ecomp.GetOutput()) 1458 self.pipeline = utils.OperationNode("frequency_pass_filter", parents=[self], c="#4cc9f0") 1459 return self 1460 1461 def smooth_gaussian(self, sigma=(2, 2, 2), radius=None) -> Self: 1462 """ 1463 Performs a convolution of the input Volume with a gaussian. 1464 1465 Arguments: 1466 sigma : (float, list) 1467 standard deviation(s) in voxel units. 1468 A list can be given to smooth in the three direction differently. 1469 radius : (float, list) 1470 radius factor(s) determine how far out the gaussian 1471 kernel will go before being clamped to zero. A list can be given too. 1472 """ 1473 gsf = vtki.new("ImageGaussianSmooth") 1474 gsf.SetDimensionality(3) 1475 gsf.SetInputData(self.dataset) 1476 if utils.is_sequence(sigma): 1477 gsf.SetStandardDeviations(sigma) 1478 else: 1479 gsf.SetStandardDeviation(sigma) 1480 if radius is not None: 1481 if utils.is_sequence(radius): 1482 gsf.SetRadiusFactors(radius) 1483 else: 1484 gsf.SetRadiusFactor(radius) 1485 gsf.Update() 1486 self._update(gsf.GetOutput()) 1487 self.pipeline = utils.OperationNode("smooth_gaussian", parents=[self], c="#4cc9f0") 1488 return self 1489 1490 def smooth_median(self, neighbours=(2, 2, 2)) -> Self: 1491 """ 1492 Median filter that replaces each pixel with the median value 1493 from a rectangular neighborhood around that pixel. 1494 """ 1495 imgm = vtki.new("ImageMedian3D") 1496 imgm.SetInputData(self.dataset) 1497 if utils.is_sequence(neighbours): 1498 imgm.SetKernelSize(neighbours[0], neighbours[1], neighbours[2]) 1499 else: 1500 imgm.SetKernelSize(neighbours, neighbours, neighbours) 1501 imgm.Update() 1502 self._update(imgm.GetOutput()) 1503 self.pipeline = utils.OperationNode("smooth_median", parents=[self], c="#4cc9f0") 1504 return self 1505 1506 def erode(self, neighbours=(2, 2, 2)) -> Self: 1507 """ 1508 Replace a voxel with the minimum over an ellipsoidal neighborhood of voxels. 1509 If `neighbours` of an axis is 1, no processing is done on that axis. 1510 1511 Examples: 1512 - [erode_dilate.py](https://github.com/marcomusy/vedo/tree/master/examples/volumetric/erode_dilate.py) 1513 1514 ![](https://vedo.embl.es/images/volumetric/erode_dilate.png) 1515 """ 1516 ver = vtki.new("ImageContinuousErode3D") 1517 ver.SetInputData(self.dataset) 1518 ver.SetKernelSize(neighbours[0], neighbours[1], neighbours[2]) 1519 ver.Update() 1520 self._update(ver.GetOutput()) 1521 self.pipeline = utils.OperationNode("erode", parents=[self], c="#4cc9f0") 1522 return self 1523 1524 def dilate(self, neighbours=(2, 2, 2)) -> Self: 1525 """ 1526 Replace a voxel with the maximum over an ellipsoidal neighborhood of voxels. 1527 If `neighbours` of an axis is 1, no processing is done on that axis. 1528 1529 Check also `erode()` and `pad()`. 1530 1531 Examples: 1532 - [erode_dilate.py](https://github.com/marcomusy/vedo/tree/master/examples/volumetric/erode_dilate.py) 1533 """ 1534 ver = vtki.new("ImageContinuousDilate3D") 1535 ver.SetInputData(self.dataset) 1536 ver.SetKernelSize(neighbours[0], neighbours[1], neighbours[2]) 1537 ver.Update() 1538 self._update(ver.GetOutput()) 1539 self.pipeline = utils.OperationNode("dilate", parents=[self], c="#4cc9f0") 1540 return self 1541 1542 def magnitude(self) -> Self: 1543 """Colapses components with magnitude function.""" 1544 imgm = vtki.new("ImageMagnitude") 1545 imgm.SetInputData(self.dataset) 1546 imgm.Update() 1547 self._update(imgm.GetOutput()) 1548 self.pipeline = utils.OperationNode("magnitude", parents=[self], c="#4cc9f0") 1549 return self 1550 1551 def topoints(self) -> "vedo.Points": 1552 """ 1553 Extract all image voxels as points. 1554 This function takes an input `Volume` and creates an `Mesh` 1555 that contains the points and the point attributes. 1556 1557 Examples: 1558 - [vol2points.py](https://github.com/marcomusy/vedo/tree/master/examples/volumetric/vol2points.py) 1559 """ 1560 v2p = vtki.new("ImageToPoints") 1561 v2p.SetInputData(self.dataset) 1562 v2p.Update() 1563 mpts = vedo.Points(v2p.GetOutput()) 1564 mpts.pipeline = utils.OperationNode("topoints", parents=[self], c="#4cc9f0:#e9c46a") 1565 return mpts 1566 1567 def euclidean_distance(self, anisotropy=False, max_distance=None) -> "Volume": 1568 """ 1569 Implementation of the Euclidean DT (Distance Transform) using Saito's algorithm. 1570 The distance map produced contains the square of the Euclidean distance values. 1571 The algorithm has a O(n^(D+1)) complexity over n x n x...x n images in D dimensions. 1572 1573 Check out also: https://en.wikipedia.org/wiki/Distance_transform 1574 1575 Arguments: 1576 anisotropy : bool 1577 used to define whether Spacing should be used in the 1578 computation of the distances. 1579 max_distance : bool 1580 any distance bigger than max_distance will not be 1581 computed but set to this specified value instead. 1582 1583 Examples: 1584 - [euclidian_dist.py](https://github.com/marcomusy/vedo/tree/master/examples/volumetric/euclidian_dist.py) 1585 """ 1586 euv = vtki.new("ImageEuclideanDistance") 1587 euv.SetInputData(self.dataset) 1588 euv.SetConsiderAnisotropy(anisotropy) 1589 if max_distance is not None: 1590 euv.InitializeOn() 1591 euv.SetMaximumDistance(max_distance) 1592 euv.SetAlgorithmToSaito() 1593 euv.Update() 1594 vol = Volume(euv.GetOutput()) 1595 vol.pipeline = utils.OperationNode("euclidean_distance", parents=[self], c="#4cc9f0") 1596 return vol 1597 1598 def correlation_with(self, vol2: "Volume", dim=2) -> "Volume": 1599 """ 1600 Find the correlation between two volumetric data sets. 1601 Keyword `dim` determines whether the correlation will be 3D, 2D or 1D. 1602 The default is a 2D Correlation. 1603 1604 The output size will match the size of the first input. 1605 The second input is considered the correlation kernel. 1606 """ 1607 imc = vtki.new("ImageCorrelation") 1608 imc.SetInput1Data(self.dataset) 1609 imc.SetInput2Data(vol2.dataset) 1610 imc.SetDimensionality(dim) 1611 imc.Update() 1612 vol = Volume(imc.GetOutput()) 1613 1614 vol.pipeline = utils.OperationNode("correlation_with", parents=[self, vol2], c="#4cc9f0") 1615 return vol 1616 1617 def scale_voxels(self, scale=1) -> Self: 1618 """Scale the voxel content by factor `scale`.""" 1619 rsl = vtki.new("ImageReslice") 1620 rsl.SetInputData(self.dataset) 1621 rsl.SetScalarScale(scale) 1622 rsl.Update() 1623 self._update(rsl.GetOutput()) 1624 self.pipeline = utils.OperationNode( 1625 "scale_voxels", comment=f"scale={scale}", parents=[self], c="#4cc9f0" 1626 ) 1627 return self
Class to describe dataset that are defined on "voxels", the 3D equivalent of 2D pixels.
38 def __init__( 39 self, 40 input_obj=None, 41 dims=None, 42 origin=None, 43 spacing=None, 44 ) -> None: 45 """ 46 This class can be initialized with a numpy object, a `vtkImageData` or a list of 2D bmp files. 47 48 Arguments: 49 input_obj : (str, vtkImageData, np.ndarray) 50 input data can be a file name, a vtkImageData or a numpy object. 51 origin : (list) 52 set volume origin coordinates 53 spacing : (list) 54 voxel dimensions in x, y and z. 55 dims : (list) 56 specify the dimensions of the volume. 57 58 Note: 59 If your input is an array ordered as ZYX you can permute it to XYZ with: 60 `array = np.transpose(array, axes=[2, 1, 0])`. 61 Alternatively you can also use the `Volume(zyx_array).permute_axes(2,1,0)` method. 62 63 Example: 64 ```python 65 from vedo import Volume 66 vol = Volume("path/to/mydata/rec*.bmp") 67 vol.show() 68 ``` 69 70 Examples: 71 - [numpy2volume1.py](https://github.com/marcomusy/vedo/tree/master/examples/volumetric/numpy2volume1.py) 72 73 ![](https://vedo.embl.es/images/volumetric/numpy2volume1.png) 74 75 - [read_volume2.py](https://github.com/marcomusy/vedo/tree/master/examples/volumetric/read_volume2.py) 76 77 ![](https://vedo.embl.es/images/volumetric/read_volume2.png) 78 79 .. note:: 80 if a `list` of values is used for `alphas` this is interpreted 81 as a transfer function along the range of the scalar. 82 """ 83 super().__init__() 84 85 self.name = "Volume" 86 self.filename = "" 87 self.file_size = "" 88 89 self.info = {} 90 self.time = time.time() 91 92 self.actor = vtki.vtkVolume() 93 self.actor.retrieve_object = weak_ref_to(self) 94 self.properties = self.actor.GetProperty() 95 96 self.transform = None 97 self.point_locator = None 98 self.cell_locator = None 99 self.line_locator = None 100 101 ################### 102 if isinstance(input_obj, str): 103 if "https://" in input_obj: 104 input_obj = vedo.file_io.download(input_obj, verbose=False) # fpath 105 elif os.path.isfile(input_obj): 106 self.filename = input_obj 107 else: 108 input_obj = sorted(glob.glob(input_obj)) 109 110 ################### 111 inputtype = str(type(input_obj)) 112 113 # print('Volume inputtype', inputtype, c='b') 114 115 if input_obj is None: 116 img = vtki.vtkImageData() 117 118 elif utils.is_sequence(input_obj): 119 120 if isinstance(input_obj[0], str) and ".bmp" in input_obj[0].lower(): 121 # scan sequence of BMP files 122 ima = vtki.new("ImageAppend") 123 ima.SetAppendAxis(2) 124 pb = utils.ProgressBar(0, len(input_obj)) 125 for i in pb.range(): 126 f = input_obj[i] 127 if "_rec_spr" in f: # OPT specific 128 continue 129 picr = vtki.new("BMPReader") 130 picr.SetFileName(f) 131 picr.Update() 132 mgf = vtki.new("ImageMagnitude") 133 mgf.SetInputData(picr.GetOutput()) 134 mgf.Update() 135 ima.AddInputData(mgf.GetOutput()) 136 pb.print("loading...") 137 ima.Update() 138 img = ima.GetOutput() 139 140 else: 141 142 if len(input_obj.shape) == 1: 143 varr = utils.numpy2vtk(input_obj) 144 else: 145 varr = utils.numpy2vtk(input_obj.ravel(order="F")) 146 varr.SetName("input_scalars") 147 148 img = vtki.vtkImageData() 149 if dims is not None: 150 img.SetDimensions(dims[2], dims[1], dims[0]) 151 else: 152 if len(input_obj.shape) == 1: 153 vedo.logger.error("must set dimensions (dims keyword) in Volume") 154 raise RuntimeError() 155 img.SetDimensions(input_obj.shape) 156 img.GetPointData().AddArray(varr) 157 img.GetPointData().SetActiveScalars(varr.GetName()) 158 159 elif isinstance(input_obj, vtki.vtkImageData): 160 img = input_obj 161 162 elif isinstance(input_obj, str): 163 if "https://" in input_obj: 164 input_obj = vedo.file_io.download(input_obj, verbose=False) 165 img = vedo.file_io.loadImageData(input_obj) 166 self.filename = input_obj 167 168 else: 169 vedo.logger.error(f"cannot understand input type {inputtype}") 170 return 171 172 if dims is not None: 173 img.SetDimensions(dims) 174 175 if origin is not None: 176 img.SetOrigin(origin) 177 178 if spacing is not None: 179 img.SetSpacing(spacing) 180 181 self.dataset = img 182 self.transform = None 183 184 ##################################### 185 mapper = vtki.new("SmartVolumeMapper") 186 mapper.SetInputData(img) 187 self.actor.SetMapper(mapper) 188 189 if img.GetPointData().GetScalars(): 190 if img.GetPointData().GetScalars().GetNumberOfComponents() == 1: 191 self.properties.SetShade(True) 192 self.properties.SetInterpolationType(1) 193 self.cmap("RdBu_r") 194 self.alpha([0.0, 0.0, 0.2, 0.4, 0.8, 1.0]) 195 self.alpha_gradient(None) 196 self.properties.SetScalarOpacityUnitDistance(1.0) 197 198 self.pipeline = utils.OperationNode( 199 "Volume", comment=f"dims={tuple(self.dimensions())}", c="#4cc9f0" 200 ) 201 #######################################################################
This class can be initialized with a numpy object, a vtkImageData
or a list of 2D bmp files.
Arguments:
- input_obj : (str, vtkImageData, np.ndarray) input data can be a file name, a vtkImageData or a numpy object.
- origin : (list) set volume origin coordinates
- spacing : (list) voxel dimensions in x, y and z.
- dims : (list) specify the dimensions of the volume.
Note:
If your input is an array ordered as ZYX you can permute it to XYZ with:
array = np.transpose(array, axes=[2, 1, 0])
. Alternatively you can also use theVolume(zyx_array).permute_axes(2,1,0)
method.
Example:
from vedo import Volume vol = Volume("path/to/mydata/rec*.bmp") vol.show()
Examples:
if a list
of values is used for alphas
this is interpreted
as a transfer function along the range of the scalar.
203 @property 204 def mapper(self): 205 """Return the underlying `vtkMapper` object.""" 206 return self.actor.GetMapper()
Return the underlying vtkMapper
object.
237 def c(self, *args, **kwargs) -> Self: 238 """Deprecated. Use `Volume.cmap()` instead.""" 239 vedo.logger.warning("Volume.c() is deprecated, use Volume.cmap() instead") 240 return self.cmap(*args, **kwargs)
Deprecated. Use Volume.cmap()
instead.
379 def copy(self, deep=True) -> "Volume": 380 """Return a copy of the Volume. Alias of `clone()`.""" 381 return self.clone(deep=deep)
Return a copy of the Volume. Alias of clone()
.
383 def clone(self, deep=True) -> "Volume": 384 """Return a clone copy of the Volume. Alias of `copy()`.""" 385 if deep: 386 newimg = vtki.vtkImageData() 387 newimg.CopyStructure(self.dataset) 388 newimg.CopyAttributes(self.dataset) 389 newvol = Volume(newimg) 390 else: 391 newvol = Volume(self.dataset) 392 393 prop = vtki.vtkVolumeProperty() 394 prop.DeepCopy(self.properties) 395 newvol.actor.SetProperty(prop) 396 newvol.properties = prop 397 398 newvol.pipeline = utils.OperationNode("clone", parents=[self], c="#bbd0ff", shape="diamond") 399 return newvol
Return a clone copy of the Volume. Alias of copy()
.
401 def astype(self, dtype: Union[str, int]) -> Self: 402 """ 403 Reset the type of the scalars array. 404 405 Arguments: 406 dtype : (str) 407 the type of the scalars array in 408 ["int8", "uint8", "int16", "uint16", "int32", "uint32", "float32", "float64"] 409 """ 410 if dtype in ["int8", "uint8", "int16", "uint16", "int32", "uint32", "float32", "float64"]: 411 caster = vtki.new("ImageCast") 412 caster.SetInputData(self.dataset) 413 caster.SetOutputScalarType(int(vtki.array_types[dtype])) 414 caster.ClampOverflowOn() 415 caster.Update() 416 self._update(caster.GetOutput()) 417 self.pipeline = utils.OperationNode(f"astype({dtype})", parents=[self], c="#4cc9f0") 418 else: 419 vedo.logger.error(f"astype(): unknown type {dtype}") 420 raise ValueError() 421 return self
Reset the type of the scalars array.
Arguments:
- dtype : (str) the type of the scalars array in ["int8", "uint8", "int16", "uint16", "int32", "uint32", "float32", "float64"]
423 def component_weight(self, i: int, weight: float) -> Self: 424 """Set the scalar component weight in range [0,1].""" 425 self.properties.SetComponentWeight(i, weight) 426 return self
Set the scalar component weight in range [0,1].
428 def xslice(self, i: int) -> Mesh: 429 """Extract the slice at index `i` of volume along x-axis.""" 430 vslice = vtki.new("ImageDataGeometryFilter") 431 vslice.SetInputData(self.dataset) 432 nx, ny, nz = self.dataset.GetDimensions() 433 if i > nx - 1: 434 i = nx - 1 435 vslice.SetExtent(i, i, 0, ny, 0, nz) 436 vslice.Update() 437 m = Mesh(vslice.GetOutput()) 438 m.pipeline = utils.OperationNode(f"xslice {i}", parents=[self], c="#4cc9f0:#e9c46a") 439 return m
Extract the slice at index i
of volume along x-axis.
441 def yslice(self, j: int) -> Mesh: 442 """Extract the slice at index `j` of volume along y-axis.""" 443 vslice = vtki.new("ImageDataGeometryFilter") 444 vslice.SetInputData(self.dataset) 445 nx, ny, nz = self.dataset.GetDimensions() 446 if j > ny - 1: 447 j = ny - 1 448 vslice.SetExtent(0, nx, j, j, 0, nz) 449 vslice.Update() 450 m = Mesh(vslice.GetOutput()) 451 m.pipeline = utils.OperationNode(f"yslice {j}", parents=[self], c="#4cc9f0:#e9c46a") 452 return m
Extract the slice at index j
of volume along y-axis.
454 def zslice(self, k: int) -> Mesh: 455 """Extract the slice at index `i` of volume along z-axis.""" 456 vslice = vtki.new("ImageDataGeometryFilter") 457 vslice.SetInputData(self.dataset) 458 nx, ny, nz = self.dataset.GetDimensions() 459 if k > nz - 1: 460 k = nz - 1 461 vslice.SetExtent(0, nx, 0, ny, k, k) 462 vslice.Update() 463 m = Mesh(vslice.GetOutput()) 464 m.pipeline = utils.OperationNode(f"zslice {k}", parents=[self], c="#4cc9f0:#e9c46a") 465 return m
Extract the slice at index i
of volume along z-axis.
467 def slice_plane(self, origin: List[float], normal: List[float], autocrop=False, border=0.5, mode="linear") -> Mesh: 468 """ 469 Extract the slice along a given plane position and normal. 470 471 Two metadata arrays are added to the output Mesh: 472 - "shape" : contains the shape of the slice 473 - "original_bounds" : contains the original bounds of the slice 474 One can access them with e.g. `myslice.metadata["shape"]`. 475 476 Arguments: 477 origin : (list) 478 position of the plane 479 normal : (list) 480 normal to the plane 481 autocrop : (bool) 482 crop the output to the minimal possible size 483 border : (float) 484 add a border to the output slice 485 mode : (str) 486 interpolation mode, one of the following: "linear", "nearest", "cubic" 487 488 Example: 489 - [slice_plane1.py](https://github.com/marcomusy/vedo/tree/master/examples/volumetric/slice_plane1.py) 490 491 ![](https://vedo.embl.es/images/volumetric/slicePlane1.gif) 492 493 - [slice_plane2.py](https://github.com/marcomusy/vedo/tree/master/examples/volumetric/slice_plane2.py) 494 495 ![](https://vedo.embl.es/images/volumetric/slicePlane2.png) 496 497 - [slice_plane3.py](https://github.com/marcomusy/vedo/tree/master/examples/volumetric/slice_plane3.py) 498 499 ![](https://vedo.embl.es/images/volumetric/slicePlane3.jpg) 500 """ 501 newaxis = utils.versor(normal) 502 pos = np.array(origin) 503 initaxis = (0, 0, 1) 504 crossvec = np.cross(initaxis, newaxis) 505 angle = np.arccos(np.dot(initaxis, newaxis)) 506 T = vtki.vtkTransform() 507 T.PostMultiply() 508 T.RotateWXYZ(np.rad2deg(angle), crossvec.tolist()) 509 T.Translate(pos.tolist()) 510 511 reslice = vtki.new("ImageReslice") 512 reslice.SetResliceAxes(T.GetMatrix()) 513 reslice.SetInputData(self.dataset) 514 reslice.SetOutputDimensionality(2) 515 reslice.SetTransformInputSampling(True) 516 reslice.SetGenerateStencilOutput(False) 517 if border: 518 reslice.SetBorder(True) 519 reslice.SetBorderThickness(border) 520 else: 521 reslice.SetBorder(False) 522 if mode == "linear": 523 reslice.SetInterpolationModeToLinear() 524 elif mode == "nearest": 525 reslice.SetInterpolationModeToNearestNeighbor() 526 elif mode == "cubic": 527 reslice.SetInterpolationModeToCubic() 528 else: 529 vedo.logger.error(f"in slice_plane(): unknown interpolation mode {mode}") 530 raise ValueError() 531 reslice.SetAutoCropOutput(not autocrop) 532 reslice.Update() 533 img = reslice.GetOutput() 534 535 vslice = vtki.new("ImageDataGeometryFilter") 536 vslice.SetInputData(img) 537 vslice.Update() 538 539 msh = Mesh(vslice.GetOutput()).apply_transform(T) 540 msh.properties.LightingOff() 541 542 d0, d1, _ = img.GetDimensions() 543 varr1 = utils.numpy2vtk([d1, d0], name="shape") 544 varr2 = utils.numpy2vtk(img.GetBounds(), name="original_bounds") 545 msh.dataset.GetFieldData().AddArray(varr1) 546 msh.dataset.GetFieldData().AddArray(varr2) 547 msh.pipeline = utils.OperationNode("slice_plane", parents=[self], c="#4cc9f0:#e9c46a") 548 return msh
Extract the slice along a given plane position and normal.
Two metadata arrays are added to the output Mesh:
- "shape" : contains the shape of the slice
- "original_bounds" : contains the original bounds of the slice
One can access them with e.g. myslice.metadata["shape"]
.
Arguments:
- origin : (list) position of the plane
- normal : (list) normal to the plane
- autocrop : (bool) crop the output to the minimal possible size
- border : (float) add a border to the output slice
- mode : (str) interpolation mode, one of the following: "linear", "nearest", "cubic"
Example:
550 def slab(self, slice_range=(), axis='z', operation="mean") -> Mesh: 551 """ 552 Extract a slab from a `Volume` by combining 553 all of the slices of an image to create a single slice. 554 555 Returns a `Mesh` containing metadata which 556 can be accessed with e.g. `mesh.metadata["slab_range"]`. 557 558 Metadata: 559 slab_range : (list) 560 contains the range of slices extracted 561 slab_axis : (str) 562 contains the axis along which the slab was extracted 563 slab_operation : (str) 564 contains the operation performed on the slab 565 slab_bounding_box : (list) 566 contains the bounding box of the slab 567 568 Arguments: 569 slice_range : (list) 570 range of slices to extract 571 axis : (str) 572 axis along which to extract the slab 573 operation : (str) 574 operation to perform on the slab, 575 allowed values are: "sum", "min", "max", "mean". 576 577 Example: 578 - [slab.py](https://github.com/marcomusy/vedo/blob/master/examples/volumetric/slab_vol.py) 579 580 ![](https://vedo.embl.es/images/volumetric/slab_vol.jpg) 581 """ 582 if len(slice_range) != 2: 583 vedo.logger.error("in slab(): slice_range is empty or invalid") 584 raise ValueError() 585 586 islab = vtki.new("ImageSlab") 587 islab.SetInputData(self.dataset) 588 589 if operation in ["+", "add", "sum"]: 590 islab.SetOperationToSum() 591 elif "min" in operation: 592 islab.SetOperationToMin() 593 elif "max" in operation: 594 islab.SetOperationToMax() 595 elif "mean" in operation: 596 islab.SetOperationToMean() 597 else: 598 vedo.logger.error(f"in slab(): unknown operation {operation}") 599 raise ValueError() 600 601 dims = self.dimensions() 602 if axis == 'x': 603 islab.SetOrientationToX() 604 if slice_range[0] > dims[0]-1: 605 slice_range[0] = dims[0]-1 606 if slice_range[1] > dims[0]-1: 607 slice_range[1] = dims[0]-1 608 elif axis == 'y': 609 islab.SetOrientationToY() 610 if slice_range[0] > dims[1]-1: 611 slice_range[0] = dims[1]-1 612 if slice_range[1] > dims[1]-1: 613 slice_range[1] = dims[1]-1 614 elif axis == 'z': 615 islab.SetOrientationToZ() 616 if slice_range[0] > dims[2]-1: 617 slice_range[0] = dims[2]-1 618 if slice_range[1] > dims[2]-1: 619 slice_range[1] = dims[2]-1 620 else: 621 vedo.logger.error(f"Error in slab(): unknown axis {axis}") 622 raise RuntimeError() 623 624 islab.SetSliceRange(slice_range) 625 islab.Update() 626 627 msh = Mesh(islab.GetOutput()).lighting('off') 628 msh.mapper.SetLookupTable(utils.ctf2lut(self, msh)) 629 msh.mapper.SetScalarRange(self.scalar_range()) 630 631 msh.metadata["slab_range"] = slice_range 632 msh.metadata["slab_axis"] = axis 633 msh.metadata["slab_operation"] = operation 634 635 # compute bounds of slab 636 origin = list(self.origin()) 637 spacing = list(self.spacing()) 638 if axis == 'x': 639 msh.metadata["slab_bounding_box"] = [ 640 origin[0] + slice_range[0]*spacing[0], 641 origin[0] + slice_range[1]*spacing[0], 642 origin[1], 643 origin[1] + dims[1]*spacing[1], 644 origin[2], 645 origin[2] + dims[2]*spacing[2], 646 ] 647 elif axis == 'y': 648 msh.metadata["slab_bounding_box"] = [ 649 origin[0], 650 origin[0] + dims[0]*spacing[0], 651 origin[1] + slice_range[0]*spacing[1], 652 origin[1] + slice_range[1]*spacing[1], 653 origin[2], 654 origin[2] + dims[2]*spacing[2], 655 ] 656 elif axis == 'z': 657 msh.metadata["slab_bounding_box"] = [ 658 origin[0], 659 origin[0] + dims[0]*spacing[0], 660 origin[1], 661 origin[1] + dims[1]*spacing[1], 662 origin[2] + slice_range[0]*spacing[2], 663 origin[2] + slice_range[1]*spacing[2], 664 ] 665 666 msh.pipeline = utils.OperationNode( 667 f"slab{slice_range}", 668 comment=f"axis={axis}, operation={operation}", 669 parents=[self], 670 c="#4cc9f0:#e9c46a", 671 ) 672 msh.name = "SlabMesh" 673 return msh
Extract a slab from a Volume
by combining
all of the slices of an image to create a single slice.
Returns a Mesh
containing metadata which
can be accessed with e.g. mesh.metadata["slab_range"]
.
Metadata:
slab_range : (list) contains the range of slices extracted slab_axis : (str) contains the axis along which the slab was extracted slab_operation : (str) contains the operation performed on the slab slab_bounding_box : (list) contains the bounding box of the slab
Arguments:
- slice_range : (list) range of slices to extract
- axis : (str) axis along which to extract the slab
- operation : (str) operation to perform on the slab, allowed values are: "sum", "min", "max", "mean".
Example:
676 def warp( 677 self, 678 source: Union["vedo.Points", List], 679 target: Union["vedo.Points", List], 680 sigma=1, mode="3d", fit=True, 681 ) -> Self: 682 """ 683 Warp volume scalars within a Volume by specifying 684 source and target sets of points. 685 686 Arguments: 687 source : (Points, list) 688 the list of source points 689 target : (Points, list) 690 the list of target points 691 fit : (bool) 692 fit/adapt the old bounding box to the warped geometry 693 """ 694 if isinstance(source, vedo.Points): 695 source = source.vertices 696 if isinstance(target, vedo.Points): 697 target = target.vertices 698 699 NLT = transformations.NonLinearTransform() 700 NLT.source_points = source 701 NLT.target_points = target 702 NLT.sigma = sigma 703 NLT.mode = mode 704 705 self.apply_transform(NLT, fit=fit) 706 self.pipeline = utils.OperationNode("warp", parents=[self], c="#4cc9f0") 707 return self
Warp volume scalars within a Volume by specifying source and target sets of points.
Arguments:
- source : (Points, list) the list of source points
- target : (Points, list) the list of target points
- fit : (bool) fit/adapt the old bounding box to the warped geometry
709 def apply_transform( 710 self, 711 T: Union[transformations.LinearTransform, transformations.NonLinearTransform], 712 fit=True, interpolation="cubic", 713 ) -> Self: 714 """ 715 Apply a transform to the scalars in the volume. 716 717 Arguments: 718 T : (LinearTransform, NonLinearTransform) 719 The transformation to be applied 720 fit : (bool) 721 fit/adapt the old bounding box to the modified geometry 722 interpolation : (str) 723 one of the following: "nearest", "linear", "cubic" 724 """ 725 if utils.is_sequence(T): 726 T = transformations.LinearTransform(T) 727 728 TI = T.compute_inverse() 729 730 reslice = vtki.new("ImageReslice") 731 reslice.SetInputData(self.dataset) 732 reslice.SetResliceTransform(TI.T) 733 reslice.SetOutputDimensionality(3) 734 if "lin" in interpolation.lower(): 735 reslice.SetInterpolationModeToLinear() 736 elif "near" in interpolation.lower(): 737 reslice.SetInterpolationModeToNearestNeighbor() 738 elif "cubic" in interpolation.lower(): 739 reslice.SetInterpolationModeToCubic() 740 else: 741 vedo.logger.error( 742 f"in apply_transform: unknown interpolation mode {interpolation}") 743 raise ValueError() 744 reslice.SetAutoCropOutput(fit) 745 reslice.Update() 746 self._update(reslice.GetOutput()) 747 self.transform = T 748 self.pipeline = utils.OperationNode( 749 "apply_transform", parents=[self], c="#4cc9f0") 750 return self
Apply a transform to the scalars in the volume.
Arguments:
- T : (LinearTransform, NonLinearTransform) The transformation to be applied
- fit : (bool) fit/adapt the old bounding box to the modified geometry
- interpolation : (str) one of the following: "nearest", "linear", "cubic"
752 def imagedata(self) -> vtki.vtkImageData: 753 """ 754 DEPRECATED: 755 Use `Volume.dataset` instead. 756 757 Return the underlying `vtkImagaData` object. 758 """ 759 print("Volume.imagedata() is deprecated, use Volume.dataset instead") 760 return self.dataset
DEPRECATED:
Use Volume.dataset
instead.
Return the underlying vtkImagaData
object.
762 def modified(self) -> Self: 763 """ 764 Mark the object as modified. 765 766 Example: 767 768 - [numpy2volume0.py](https://github.com/marcomusy/vedo/tree/master/examples/volumetric/numpy2volume0.py) 769 """ 770 scals = self.dataset.GetPointData().GetScalars() 771 if scals: 772 scals.Modified() 773 return self
775 def tonumpy(self) -> np.ndarray: 776 """ 777 Get read-write access to voxels of a Volume object as a numpy array. 778 779 When you set values in the output image, you don't want numpy to reallocate the array 780 but instead set values in the existing array, so use the [:] operator. 781 782 Example: 783 `arr[:] = arr*2 + 15` 784 785 If the array is modified add a call to: 786 `volume.modified()` 787 when all your modifications are completed. 788 """ 789 narray_shape = tuple(reversed(self.dataset.GetDimensions())) 790 791 scals = self.dataset.GetPointData().GetScalars() 792 comps = scals.GetNumberOfComponents() 793 if comps == 1: 794 narray = utils.vtk2numpy(scals).reshape(narray_shape) 795 narray = np.transpose(narray, axes=[2, 1, 0]) 796 else: 797 narray = utils.vtk2numpy(scals).reshape(*narray_shape, comps) 798 narray = np.transpose(narray, axes=[2, 1, 0, 3]) 799 800 # narray = utils.vtk2numpy(self.dataset.GetPointData().GetScalars()).reshape(narray_shape) 801 # narray = np.transpose(narray, axes=[2, 1, 0]) 802 return narray
Get read-write access to voxels of a Volume object as a numpy array.
When you set values in the output image, you don't want numpy to reallocate the array but instead set values in the existing array, so use the [:] operator.
Example:
arr[:] = arr*2 + 15
If the array is modified add a call to:
volume.modified()
when all your modifications are completed.
804 @property 805 def shape(self) -> np.ndarray: 806 """Return the nr. of voxels in the 3 dimensions.""" 807 return np.array(self.dataset.GetDimensions())
Return the nr. of voxels in the 3 dimensions.
809 def dimensions(self) -> np.ndarray: 810 """Return the nr. of voxels in the 3 dimensions.""" 811 return np.array(self.dataset.GetDimensions())
Return the nr. of voxels in the 3 dimensions.
813 def scalar_range(self) -> np.ndarray: 814 """Return the range of the scalar values.""" 815 return np.array(self.dataset.GetScalarRange())
Return the range of the scalar values.
817 def spacing(self, s=None) -> Union[Self, Iterable[float]]: 818 """Set/get the voxels size in the 3 dimensions.""" 819 if s is not None: 820 self.dataset.SetSpacing(s) 821 return self 822 return np.array(self.dataset.GetSpacing())
Set/get the voxels size in the 3 dimensions.
824 def origin(self, s=None) -> Union[Self, Iterable[float]]: 825 """ 826 Set/get the origin of the volumetric dataset. 827 828 The origin is the position in world coordinates of the point index (0,0,0). 829 This point does not have to be part of the dataset, in other words, 830 the dataset extent does not have to start at (0,0,0) and the origin 831 can be outside of the dataset bounding box. 832 The origin plus spacing determine the position in space of the points. 833 """ 834 if s is not None: 835 self.dataset.SetOrigin(s) 836 return self 837 return np.array(self.dataset.GetOrigin())
Set/get the origin of the volumetric dataset.
The origin is the position in world coordinates of the point index (0,0,0). This point does not have to be part of the dataset, in other words, the dataset extent does not have to start at (0,0,0) and the origin can be outside of the dataset bounding box. The origin plus spacing determine the position in space of the points.
839 def pos(self, p=None) -> Union[Self, Iterable[float]]: 840 """Set/get the position of the volumetric dataset.""" 841 if p is not None: 842 self.origin(p) 843 return self 844 return self.origin()
Set/get the position of the volumetric dataset.
846 def center(self) -> np.ndarray: 847 """Get the center of the volumetric dataset.""" 848 # note that this does not have the set method like origin and spacing 849 return np.array(self.dataset.GetCenter())
Get the center of the volumetric dataset.
851 def shift(self, s: list) -> Self: 852 """Shift the volumetric dataset by a vector.""" 853 self.origin(self.origin() + np.array(s)) 854 return self
Shift the volumetric dataset by a vector.
856 def rotate_x(self, angle: float, rad=False, around=None) -> Self: 857 """ 858 Rotate around x-axis. If angle is in radians set `rad=True`. 859 860 Use `around` to define a pivoting point. 861 """ 862 if angle == 0: 863 return self 864 LT = transformations.LinearTransform().rotate_x(angle, rad, around) 865 return self.apply_transform(LT, fit=True, interpolation="linear")
Rotate around x-axis. If angle is in radians set rad=True
.
Use around
to define a pivoting point.
867 def rotate_y(self, angle: float, rad=False, around=None) -> Self: 868 """ 869 Rotate around y-axis. If angle is in radians set `rad=True`. 870 871 Use `around` to define a pivoting point. 872 """ 873 if angle == 0: 874 return self 875 LT = transformations.LinearTransform().rotate_y(angle, rad, around) 876 return self.apply_transform(LT, fit=True, interpolation="linear")
Rotate around y-axis. If angle is in radians set rad=True
.
Use around
to define a pivoting point.
878 def rotate_z(self, angle: float, rad=False, around=None) -> Self: 879 """ 880 Rotate around z-axis. If angle is in radians set `rad=True`. 881 882 Use `around` to define a pivoting point. 883 """ 884 if angle == 0: 885 return self 886 LT = transformations.LinearTransform().rotate_z(angle, rad, around) 887 return self.apply_transform(LT, fit=True, interpolation="linear")
Rotate around z-axis. If angle is in radians set rad=True
.
Use around
to define a pivoting point.
889 def get_cell_from_ijk(self, ijk: list) -> int: 890 """ 891 Get the voxel id number at the given ijk coordinates. 892 893 Arguments: 894 ijk : (list) 895 the ijk coordinates of the voxel 896 """ 897 return self.dataset.ComputeCellId(ijk)
Get the voxel id number at the given ijk coordinates.
Arguments:
- ijk : (list) the ijk coordinates of the voxel
899 def get_point_from_ijk(self, ijk: list) -> int: 900 """ 901 Get the point id number at the given ijk coordinates. 902 903 Arguments: 904 ijk : (list) 905 the ijk coordinates of the voxel 906 """ 907 return self.dataset.ComputePointId(ijk)
Get the point id number at the given ijk coordinates.
Arguments:
- ijk : (list) the ijk coordinates of the voxel
909 def permute_axes(self, x: int, y: int, z: int) -> Self: 910 """ 911 Reorder the axes of the Volume by specifying 912 the input axes which are supposed to become the new X, Y, and Z. 913 """ 914 imp = vtki.new("ImagePermute") 915 imp.SetFilteredAxes(x, y, z) 916 imp.SetInputData(self.dataset) 917 imp.Update() 918 self._update(imp.GetOutput()) 919 self.pipeline = utils.OperationNode( 920 f"permute_axes({(x,y,z)})", parents=[self], c="#4cc9f0" 921 ) 922 return self
Reorder the axes of the Volume by specifying the input axes which are supposed to become the new X, Y, and Z.
924 def resample(self, new_spacing: List[float], interpolation=1) -> Self: 925 """ 926 Resamples a `Volume` to be larger or smaller. 927 928 This method modifies the spacing of the input. 929 Linear interpolation is used to resample the data. 930 931 Arguments: 932 new_spacing : (list) 933 a list of 3 new spacings for the 3 axes 934 interpolation : (int) 935 0=nearest_neighbor, 1=linear, 2=cubic 936 """ 937 rsp = vtki.new("ImageResample") 938 oldsp = self.spacing() 939 for i in range(3): 940 if oldsp[i] != new_spacing[i]: 941 rsp.SetAxisOutputSpacing(i, new_spacing[i]) 942 rsp.InterpolateOn() 943 rsp.SetInterpolationMode(interpolation) 944 rsp.OptimizationOn() 945 rsp.Update() 946 self._update(rsp.GetOutput()) 947 self.pipeline = utils.OperationNode( 948 "resample", comment=f"spacing: {tuple(new_spacing)}", parents=[self], c="#4cc9f0" 949 ) 950 return self
Resamples a Volume
to be larger or smaller.
This method modifies the spacing of the input. Linear interpolation is used to resample the data.
Arguments:
- new_spacing : (list) a list of 3 new spacings for the 3 axes
- interpolation : (int) 0=nearest_neighbor, 1=linear, 2=cubic
953 def threshold(self, above=None, below=None, replace=None, replace_value=None) -> Self: 954 """ 955 Binary or continuous volume thresholding. 956 Find the voxels that contain a value above/below the input values 957 and replace them with a new value (default is 0). 958 """ 959 th = vtki.new("ImageThreshold") 960 th.SetInputData(self.dataset) 961 962 # sanity checks 963 if above is not None and below is not None: 964 if above == below: 965 return self 966 if above > below: 967 vedo.logger.warning("in volume.threshold(), above > below, skip.") 968 return self 969 970 ## cases 971 if below is not None and above is not None: 972 th.ThresholdBetween(above, below) 973 974 elif above is not None: 975 th.ThresholdByUpper(above) 976 977 elif below is not None: 978 th.ThresholdByLower(below) 979 980 ## 981 if replace is not None: 982 th.SetReplaceIn(True) 983 th.SetInValue(replace) 984 else: 985 th.SetReplaceIn(False) 986 987 if replace_value is not None: 988 th.SetReplaceOut(True) 989 th.SetOutValue(replace_value) 990 else: 991 th.SetReplaceOut(False) 992 993 th.Update() 994 self._update(th.GetOutput()) 995 self.pipeline = utils.OperationNode("threshold", parents=[self], c="#4cc9f0") 996 return self
Binary or continuous volume thresholding. Find the voxels that contain a value above/below the input values and replace them with a new value (default is 0).
998 def crop(self, left=None, right=None, back=None, front=None, bottom=None, top=None, VOI=()) -> Self: 999 """ 1000 Crop a `Volume` object. 1001 1002 Arguments: 1003 left : (float) 1004 fraction to crop from the left plane (negative x) 1005 right : (float) 1006 fraction to crop from the right plane (positive x) 1007 back : (float) 1008 fraction to crop from the back plane (negative y) 1009 front : (float) 1010 fraction to crop from the front plane (positive y) 1011 bottom : (float) 1012 fraction to crop from the bottom plane (negative z) 1013 top : (float) 1014 fraction to crop from the top plane (positive z) 1015 VOI : (list) 1016 extract Volume Of Interest expressed in voxel numbers 1017 1018 Example: 1019 `vol.crop(VOI=(xmin, xmax, ymin, ymax, zmin, zmax)) # all integers nrs` 1020 """ 1021 extractVOI = vtki.new("ExtractVOI") 1022 extractVOI.SetInputData(self.dataset) 1023 1024 if VOI: 1025 extractVOI.SetVOI(VOI) 1026 else: 1027 d = self.dataset.GetDimensions() 1028 bx0, bx1, by0, by1, bz0, bz1 = 0, d[0]-1, 0, d[1]-1, 0, d[2]-1 1029 if left is not None: bx0 = int((d[0]-1)*left) 1030 if right is not None: bx1 = int((d[0]-1)*(1-right)) 1031 if back is not None: by0 = int((d[1]-1)*back) 1032 if front is not None: by1 = int((d[1]-1)*(1-front)) 1033 if bottom is not None: bz0 = int((d[2]-1)*bottom) 1034 if top is not None: bz1 = int((d[2]-1)*(1-top)) 1035 extractVOI.SetVOI(bx0, bx1, by0, by1, bz0, bz1) 1036 extractVOI.Update() 1037 self._update(extractVOI.GetOutput()) 1038 1039 self.pipeline = utils.OperationNode( 1040 "crop", parents=[self], c="#4cc9f0", comment=f"dims={tuple(self.dimensions())}" 1041 ) 1042 return self
Crop a Volume
object.
Arguments:
- left : (float) fraction to crop from the left plane (negative x)
- right : (float) fraction to crop from the right plane (positive x)
- back : (float) fraction to crop from the back plane (negative y)
- front : (float) fraction to crop from the front plane (positive y)
- bottom : (float) fraction to crop from the bottom plane (negative z)
- top : (float) fraction to crop from the top plane (positive z)
- VOI : (list) extract Volume Of Interest expressed in voxel numbers
Example:
vol.crop(VOI=(xmin, xmax, ymin, ymax, zmin, zmax)) # all integers nrs
1044 def append(self, *volumes, axis="z", preserve_extents=False) -> Self: 1045 """ 1046 Take the components from multiple inputs and merges them into one output. 1047 Except for the append axis, all inputs must have the same extent. 1048 All inputs must have the same number of scalar components. 1049 The output has the same origin and spacing as the first input. 1050 The origin and spacing of all other inputs are ignored. 1051 All inputs must have the same scalar type. 1052 1053 Arguments: 1054 axis : (int, str) 1055 axis expanded to hold the multiple images 1056 preserve_extents : (bool) 1057 if True, the extent of the inputs is used to place 1058 the image in the output. The whole extent of the output is the union of the input 1059 whole extents. Any portion of the output not covered by the inputs is set to zero. 1060 The origin and spacing is taken from the first input. 1061 1062 Example: 1063 ```python 1064 from vedo import Volume, dataurl 1065 vol = Volume(dataurl+'embryo.tif') 1066 vol.append(vol, axis='x').show().close() 1067 ``` 1068 ![](https://vedo.embl.es/images/feats/volume_append.png) 1069 """ 1070 ima = vtki.new("ImageAppend") 1071 ima.SetInputData(self.dataset) 1072 # if not utils.is_sequence(volumes): 1073 # volumes = [volumes] 1074 for volume in volumes: 1075 if isinstance(volume, vtki.vtkImageData): 1076 ima.AddInputData(volume) 1077 else: 1078 ima.AddInputData(volume.dataset) 1079 ima.SetPreserveExtents(preserve_extents) 1080 if axis == "x": 1081 axis = 0 1082 elif axis == "y": 1083 axis = 1 1084 elif axis == "z": 1085 axis = 2 1086 ima.SetAppendAxis(axis) 1087 ima.Update() 1088 self._update(ima.GetOutput()) 1089 1090 self.pipeline = utils.OperationNode( 1091 "append", 1092 parents=[self, *volumes], 1093 c="#4cc9f0", 1094 comment=f"dims={tuple(self.dimensions())}", 1095 ) 1096 return self
Take the components from multiple inputs and merges them into one output. Except for the append axis, all inputs must have the same extent. All inputs must have the same number of scalar components. The output has the same origin and spacing as the first input. The origin and spacing of all other inputs are ignored. All inputs must have the same scalar type.
Arguments:
- axis : (int, str) axis expanded to hold the multiple images
- preserve_extents : (bool) if True, the extent of the inputs is used to place the image in the output. The whole extent of the output is the union of the input whole extents. Any portion of the output not covered by the inputs is set to zero. The origin and spacing is taken from the first input.
Example:
from vedo import Volume, dataurl vol = Volume(dataurl+'embryo.tif') vol.append(vol, axis='x').show().close()
1098 def pad(self, voxels=10, value=0) -> Self: 1099 """ 1100 Add the specified number of voxels at the `Volume` borders. 1101 Voxels can be a list formatted as `[nx0, nx1, ny0, ny1, nz0, nz1]`. 1102 1103 Arguments: 1104 voxels : (int, list) 1105 number of voxels to be added (or a list of length 4) 1106 value : (int) 1107 intensity value (gray-scale color) of the padding 1108 1109 Example: 1110 ```python 1111 from vedo import Volume, dataurl, show 1112 iso = Volume(dataurl+'embryo.tif').isosurface() 1113 vol = iso.binarize(spacing=(100, 100, 100)).pad(10) 1114 vol.dilate([15,15,15]) 1115 show(iso, vol.isosurface(), N=2, axes=1) 1116 ``` 1117 ![](https://vedo.embl.es/images/volumetric/volume_pad.png) 1118 """ 1119 x0, x1, y0, y1, z0, z1 = self.dataset.GetExtent() 1120 pf = vtki.new("ImageConstantPad") 1121 pf.SetInputData(self.dataset) 1122 pf.SetConstant(value) 1123 if utils.is_sequence(voxels): 1124 pf.SetOutputWholeExtent( 1125 x0 - voxels[0], x1 + voxels[1], 1126 y0 - voxels[2], y1 + voxels[3], 1127 z0 - voxels[4], z1 + voxels[5], 1128 ) 1129 else: 1130 pf.SetOutputWholeExtent( 1131 x0 - voxels, x1 + voxels, 1132 y0 - voxels, y1 + voxels, 1133 z0 - voxels, z1 + voxels, 1134 ) 1135 pf.Update() 1136 self._update(pf.GetOutput()) 1137 self.pipeline = utils.OperationNode( 1138 "pad", comment=f"{voxels} voxels", parents=[self], c="#f28482" 1139 ) 1140 return self
Add the specified number of voxels at the Volume
borders.
Voxels can be a list formatted as [nx0, nx1, ny0, ny1, nz0, nz1]
.
Arguments:
- voxels : (int, list) number of voxels to be added (or a list of length 4)
- value : (int) intensity value (gray-scale color) of the padding
Example:
from vedo import Volume, dataurl, show iso = Volume(dataurl+'embryo.tif').isosurface() vol = iso.binarize(spacing=(100, 100, 100)).pad(10) vol.dilate([15,15,15]) show(iso, vol.isosurface(), N=2, axes=1)
1142 def resize(self, newdims: List[int]) -> Self: 1143 """Increase or reduce the number of voxels of a Volume with interpolation.""" 1144 rsz = vtki.new("ImageResize") 1145 rsz.SetResizeMethodToOutputDimensions() 1146 rsz.SetInputData(self.dataset) 1147 rsz.SetOutputDimensions(newdims) 1148 rsz.Update() 1149 self.dataset = rsz.GetOutput() 1150 self._update(self.dataset) 1151 self.pipeline = utils.OperationNode( 1152 "resize", parents=[self], c="#4cc9f0", comment=f"dims={tuple(self.dimensions())}" 1153 ) 1154 return self
Increase or reduce the number of voxels of a Volume with interpolation.
1156 def normalize(self) -> Self: 1157 """Normalize that scalar components for each point.""" 1158 norm = vtki.new("ImageNormalize") 1159 norm.SetInputData(self.dataset) 1160 norm.Update() 1161 self._update(norm.GetOutput()) 1162 self.pipeline = utils.OperationNode("normalize", parents=[self], c="#4cc9f0") 1163 return self
Normalize that scalar components for each point.
1165 def mirror(self, axis="x") -> Self: 1166 """ 1167 Mirror flip along one of the cartesian axes. 1168 """ 1169 img = self.dataset 1170 1171 ff = vtki.new("ImageFlip") 1172 ff.SetInputData(img) 1173 if axis.lower() == "x": 1174 ff.SetFilteredAxis(0) 1175 elif axis.lower() == "y": 1176 ff.SetFilteredAxis(1) 1177 elif axis.lower() == "z": 1178 ff.SetFilteredAxis(2) 1179 else: 1180 vedo.logger.error("mirror must be set to either x, y, z or n") 1181 raise RuntimeError() 1182 ff.Update() 1183 self._update(ff.GetOutput()) 1184 self.pipeline = utils.OperationNode(f"mirror {axis}", parents=[self], c="#4cc9f0") 1185 return self
Mirror flip along one of the cartesian axes.
1187 def operation(self, operation: str, volume2=None) -> "Volume": 1188 """ 1189 Perform operations with `Volume` objects. 1190 Keyword `volume2` can be a constant `float`. 1191 1192 Possible operations are: 1193 ``` 1194 and, or, xor, nand, nor, not, 1195 +, -, /, 1/x, sin, cos, exp, log, 1196 abs, **2, sqrt, min, max, atan, atan2, median, 1197 mag, dot, gradient, divergence, laplacian. 1198 ``` 1199 1200 Example: 1201 ```py 1202 from vedo import Box, show 1203 vol1 = Box(size=(35,10, 5)).binarize() 1204 vol2 = Box(size=( 5,10,35)).binarize() 1205 vol = vol1.operation("xor", vol2) 1206 show([[vol1, vol2], 1207 ["vol1 xor vol2", vol]], 1208 N=2, axes=1, viewup="z", 1209 ).close() 1210 ``` 1211 1212 Note: 1213 For logic operations, the two volumes must have the same bounds. 1214 If they do not, a larger image is created to contain both and the 1215 volumes are resampled onto the larger image before the operation is 1216 performed. This can be slow and memory intensive. 1217 1218 See also: 1219 - [volume_operations.py](https://github.com/marcomusy/vedo/tree/master/examples/volumetric/volume_operations.py) 1220 """ 1221 op = operation.lower() 1222 image1 = self.dataset 1223 1224 if op in ["and", "or", "xor", "nand", "nor"]: 1225 1226 if not np.allclose(image1.GetBounds(), volume2.dataset.GetBounds()): 1227 # create a larger image to contain both 1228 b1 = image1.GetBounds() 1229 b2 = volume2.dataset.GetBounds() 1230 b = [ 1231 min(b1[0], b2[0]), 1232 max(b1[1], b2[1]), 1233 min(b1[2], b2[2]), 1234 max(b1[3], b2[3]), 1235 min(b1[4], b2[4]), 1236 max(b1[5], b2[5]), 1237 ] 1238 dims1 = image1.GetDimensions() 1239 dims2 = volume2.dataset.GetDimensions() 1240 dims = [max(dims1[0], dims2[0]), max(dims1[1], dims2[1]), max(dims1[2], dims2[2])] 1241 1242 image = vtki.vtkImageData() 1243 image.SetDimensions(dims) 1244 spacing = ( 1245 (b[1] - b[0]) / dims[0], 1246 (b[3] - b[2]) / dims[1], 1247 (b[5] - b[4]) / dims[2], 1248 ) 1249 image.SetSpacing(spacing) 1250 image.SetOrigin((b[0], b[2], b[4])) 1251 image.AllocateScalars(vtki.VTK_UNSIGNED_CHAR, 1) 1252 image.GetPointData().GetScalars().FillComponent(0, 0) 1253 1254 interp1 = vtki.new("ImageReslice") 1255 interp1.SetInputData(image1) 1256 interp1.SetOutputExtent(image.GetExtent()) 1257 interp1.SetOutputOrigin(image.GetOrigin()) 1258 interp1.SetOutputSpacing(image.GetSpacing()) 1259 interp1.SetInterpolationModeToNearestNeighbor() 1260 interp1.Update() 1261 imageA = interp1.GetOutput() 1262 1263 interp2 = vtki.new("ImageReslice") 1264 interp2.SetInputData(volume2.dataset) 1265 interp2.SetOutputExtent(image.GetExtent()) 1266 interp2.SetOutputOrigin(image.GetOrigin()) 1267 interp2.SetOutputSpacing(image.GetSpacing()) 1268 interp2.SetInterpolationModeToNearestNeighbor() 1269 interp2.Update() 1270 imageB = interp2.GetOutput() 1271 1272 else: 1273 imageA = image1 1274 imageB = volume2.dataset 1275 1276 img_logic = vtki.new("ImageLogic") 1277 img_logic.SetInput1Data(imageA) 1278 img_logic.SetInput2Data(imageB) 1279 img_logic.SetOperation(["and", "or", "xor", "nand", "nor"].index(op)) 1280 img_logic.Update() 1281 1282 out_vol = Volume(img_logic.GetOutput()) 1283 out_vol.pipeline = utils.OperationNode( 1284 "operation", comment=f"{op}", parents=[self, volume2], c="#4cc9f0", shape="cylinder" 1285 ) 1286 return out_vol ###################################################### 1287 1288 if volume2 and isinstance(volume2, Volume): 1289 # assert image1.GetScalarType() == volume2.dataset.GetScalarType(), "volumes have different scalar types" 1290 # make sure they have the same bounds: 1291 assert np.allclose(image1.GetBounds(), volume2.dataset.GetBounds()), "volumes have different bounds" 1292 # make sure they have the same spacing: 1293 assert np.allclose(image1.GetSpacing(), volume2.dataset.GetSpacing()), "volumes have different spacing" 1294 # make sure they have the same origin: 1295 assert np.allclose(image1.GetOrigin(), volume2.dataset.GetOrigin()), "volumes have different origin" 1296 1297 mf = None 1298 if op in ["median"]: 1299 mf = vtki.new("ImageMedian3D") 1300 mf.SetInputData(image1) 1301 elif op in ["mag"]: 1302 mf = vtki.new("ImageMagnitude") 1303 mf.SetInputData(image1) 1304 elif op in ["dot"]: 1305 mf = vtki.new("ImageDotProduct") 1306 mf.SetInput1Data(image1) 1307 mf.SetInput2Data(volume2.dataset) 1308 elif op in ["grad", "gradient"]: 1309 mf = vtki.new("ImageGradient") 1310 mf.SetDimensionality(3) 1311 mf.SetInputData(image1) 1312 elif op in ["div", "divergence"]: 1313 mf = vtki.new("ImageDivergence") 1314 mf.SetInputData(image1) 1315 elif op in ["laplacian"]: 1316 mf = vtki.new("ImageLaplacian") 1317 mf.SetDimensionality(3) 1318 mf.SetInputData(image1) 1319 elif op in ["not"]: 1320 mf = vtki.new("ImageLogic") 1321 mf.SetInput1Data(image1) 1322 mf.SetOperation(4) 1323 1324 if mf is not None: 1325 mf.Update() 1326 vol = Volume(mf.GetOutput()) 1327 vol.pipeline = utils.OperationNode( 1328 "operation", comment=f"{op}", parents=[self], c="#4cc9f0", shape="cylinder" 1329 ) 1330 return vol ###################################################### 1331 1332 mat = vtki.new("ImageMathematics") 1333 mat.SetInput1Data(image1) 1334 1335 K = None 1336 1337 if utils.is_number(volume2): 1338 K = volume2 1339 mat.SetConstantK(K) 1340 mat.SetConstantC(K) 1341 1342 elif volume2 is not None: # assume image2 is a constant value 1343 mat.SetInput2Data(volume2.dataset) 1344 1345 # ########################### 1346 if op in ["+", "add", "plus"]: 1347 if K: 1348 mat.SetOperationToAddConstant() 1349 else: 1350 mat.SetOperationToAdd() 1351 1352 elif op in ["-", "subtract", "minus"]: 1353 if K: 1354 mat.SetConstantC(-float(K)) 1355 mat.SetOperationToAddConstant() 1356 else: 1357 mat.SetOperationToSubtract() 1358 1359 elif op in ["*", "multiply", "times"]: 1360 if K: 1361 mat.SetOperationToMultiplyByK() 1362 else: 1363 mat.SetOperationToMultiply() 1364 1365 elif op in ["/", "divide"]: 1366 if K: 1367 mat.SetConstantK(1.0 / K) 1368 mat.SetOperationToMultiplyByK() 1369 else: 1370 mat.SetOperationToDivide() 1371 1372 elif op in ["1/x", "invert"]: 1373 mat.SetOperationToInvert() 1374 elif op in ["sin"]: 1375 mat.SetOperationToSin() 1376 elif op in ["cos"]: 1377 mat.SetOperationToCos() 1378 elif op in ["exp"]: 1379 mat.SetOperationToExp() 1380 elif op in ["log"]: 1381 mat.SetOperationToLog() 1382 elif op in ["abs"]: 1383 mat.SetOperationToAbsoluteValue() 1384 elif op in ["**2", "square"]: 1385 mat.SetOperationToSquare() 1386 elif op in ["sqrt", "sqr"]: 1387 mat.SetOperationToSquareRoot() 1388 elif op in ["min"]: 1389 mat.SetOperationToMin() 1390 elif op in ["max"]: 1391 mat.SetOperationToMax() 1392 elif op in ["atan"]: 1393 mat.SetOperationToATAN() 1394 elif op in ["atan2"]: 1395 mat.SetOperationToATAN2() 1396 else: 1397 vedo.logger.error(f"unknown operation {operation}") 1398 raise RuntimeError() 1399 mat.Update() 1400 1401 self._update(mat.GetOutput()) 1402 1403 self.pipeline = utils.OperationNode( 1404 "operation", comment=f"{op}", parents=[self, volume2], shape="cylinder", c="#4cc9f0" 1405 ) 1406 return self
Perform operations with Volume
objects.
Keyword volume2
can be a constant float
.
Possible operations are:
and, or, xor, nand, nor, not,
+, -, /, 1/x, sin, cos, exp, log,
abs, **2, sqrt, min, max, atan, atan2, median,
mag, dot, gradient, divergence, laplacian.
Example:
from vedo import Box, show
vol1 = Box(size=(35,10, 5)).binarize()
vol2 = Box(size=( 5,10,35)).binarize()
vol = vol1.operation("xor", vol2)
show([[vol1, vol2],
["vol1 xor vol2", vol]],
N=2, axes=1, viewup="z",
).close()
Note:
For logic operations, the two volumes must have the same bounds. If they do not, a larger image is created to contain both and the volumes are resampled onto the larger image before the operation is performed. This can be slow and memory intensive.
See also:
1408 def frequency_pass_filter(self, low_cutoff=None, high_cutoff=None, order=1) -> Self: 1409 """ 1410 Low-pass and high-pass filtering become trivial in the frequency domain. 1411 A portion of the pixels/voxels are simply masked or attenuated. 1412 This function applies a high pass Butterworth filter that attenuates the 1413 frequency domain image. 1414 1415 The gradual attenuation of the filter is important. 1416 A simple high-pass filter would simply mask a set of pixels in the frequency domain, 1417 but the abrupt transition would cause a ringing effect in the spatial domain. 1418 1419 Arguments: 1420 low_cutoff : (list) 1421 the cutoff frequencies for x, y and z 1422 high_cutoff : (list) 1423 the cutoff frequencies for x, y and z 1424 order : (int) 1425 order determines sharpness of the cutoff curve 1426 """ 1427 # https://lorensen.github.io/VTKExamples/site/Cxx/ImageProcessing/IdealHighPass 1428 fft = vtki.new("ImageFFT") 1429 fft.SetInputData(self.dataset) 1430 fft.Update() 1431 out = fft.GetOutput() 1432 1433 if high_cutoff: 1434 blp = vtki.new("ImageButterworthLowPass") 1435 blp.SetInputData(out) 1436 blp.SetCutOff(high_cutoff) 1437 blp.SetOrder(order) 1438 blp.Update() 1439 out = blp.GetOutput() 1440 1441 if low_cutoff: 1442 bhp = vtki.new("ImageButterworthHighPass") 1443 bhp.SetInputData(out) 1444 bhp.SetCutOff(low_cutoff) 1445 bhp.SetOrder(order) 1446 bhp.Update() 1447 out = bhp.GetOutput() 1448 1449 rfft = vtki.new("ImageRFFT") 1450 rfft.SetInputData(out) 1451 rfft.Update() 1452 1453 ecomp = vtki.new("ImageExtractComponents") 1454 ecomp.SetInputData(rfft.GetOutput()) 1455 ecomp.SetComponents(0) 1456 ecomp.Update() 1457 self._update(ecomp.GetOutput()) 1458 self.pipeline = utils.OperationNode("frequency_pass_filter", parents=[self], c="#4cc9f0") 1459 return self
Low-pass and high-pass filtering become trivial in the frequency domain. A portion of the pixels/voxels are simply masked or attenuated. This function applies a high pass Butterworth filter that attenuates the frequency domain image.
The gradual attenuation of the filter is important. A simple high-pass filter would simply mask a set of pixels in the frequency domain, but the abrupt transition would cause a ringing effect in the spatial domain.
Arguments:
- low_cutoff : (list) the cutoff frequencies for x, y and z
- high_cutoff : (list) the cutoff frequencies for x, y and z
- order : (int) order determines sharpness of the cutoff curve
1461 def smooth_gaussian(self, sigma=(2, 2, 2), radius=None) -> Self: 1462 """ 1463 Performs a convolution of the input Volume with a gaussian. 1464 1465 Arguments: 1466 sigma : (float, list) 1467 standard deviation(s) in voxel units. 1468 A list can be given to smooth in the three direction differently. 1469 radius : (float, list) 1470 radius factor(s) determine how far out the gaussian 1471 kernel will go before being clamped to zero. A list can be given too. 1472 """ 1473 gsf = vtki.new("ImageGaussianSmooth") 1474 gsf.SetDimensionality(3) 1475 gsf.SetInputData(self.dataset) 1476 if utils.is_sequence(sigma): 1477 gsf.SetStandardDeviations(sigma) 1478 else: 1479 gsf.SetStandardDeviation(sigma) 1480 if radius is not None: 1481 if utils.is_sequence(radius): 1482 gsf.SetRadiusFactors(radius) 1483 else: 1484 gsf.SetRadiusFactor(radius) 1485 gsf.Update() 1486 self._update(gsf.GetOutput()) 1487 self.pipeline = utils.OperationNode("smooth_gaussian", parents=[self], c="#4cc9f0") 1488 return self
Performs a convolution of the input Volume with a gaussian.
Arguments:
- sigma : (float, list) standard deviation(s) in voxel units. A list can be given to smooth in the three direction differently.
- radius : (float, list) radius factor(s) determine how far out the gaussian kernel will go before being clamped to zero. A list can be given too.
1490 def smooth_median(self, neighbours=(2, 2, 2)) -> Self: 1491 """ 1492 Median filter that replaces each pixel with the median value 1493 from a rectangular neighborhood around that pixel. 1494 """ 1495 imgm = vtki.new("ImageMedian3D") 1496 imgm.SetInputData(self.dataset) 1497 if utils.is_sequence(neighbours): 1498 imgm.SetKernelSize(neighbours[0], neighbours[1], neighbours[2]) 1499 else: 1500 imgm.SetKernelSize(neighbours, neighbours, neighbours) 1501 imgm.Update() 1502 self._update(imgm.GetOutput()) 1503 self.pipeline = utils.OperationNode("smooth_median", parents=[self], c="#4cc9f0") 1504 return self
Median filter that replaces each pixel with the median value from a rectangular neighborhood around that pixel.
1506 def erode(self, neighbours=(2, 2, 2)) -> Self: 1507 """ 1508 Replace a voxel with the minimum over an ellipsoidal neighborhood of voxels. 1509 If `neighbours` of an axis is 1, no processing is done on that axis. 1510 1511 Examples: 1512 - [erode_dilate.py](https://github.com/marcomusy/vedo/tree/master/examples/volumetric/erode_dilate.py) 1513 1514 ![](https://vedo.embl.es/images/volumetric/erode_dilate.png) 1515 """ 1516 ver = vtki.new("ImageContinuousErode3D") 1517 ver.SetInputData(self.dataset) 1518 ver.SetKernelSize(neighbours[0], neighbours[1], neighbours[2]) 1519 ver.Update() 1520 self._update(ver.GetOutput()) 1521 self.pipeline = utils.OperationNode("erode", parents=[self], c="#4cc9f0") 1522 return self
Replace a voxel with the minimum over an ellipsoidal neighborhood of voxels.
If neighbours
of an axis is 1, no processing is done on that axis.
Examples:
1524 def dilate(self, neighbours=(2, 2, 2)) -> Self: 1525 """ 1526 Replace a voxel with the maximum over an ellipsoidal neighborhood of voxels. 1527 If `neighbours` of an axis is 1, no processing is done on that axis. 1528 1529 Check also `erode()` and `pad()`. 1530 1531 Examples: 1532 - [erode_dilate.py](https://github.com/marcomusy/vedo/tree/master/examples/volumetric/erode_dilate.py) 1533 """ 1534 ver = vtki.new("ImageContinuousDilate3D") 1535 ver.SetInputData(self.dataset) 1536 ver.SetKernelSize(neighbours[0], neighbours[1], neighbours[2]) 1537 ver.Update() 1538 self._update(ver.GetOutput()) 1539 self.pipeline = utils.OperationNode("dilate", parents=[self], c="#4cc9f0") 1540 return self
Replace a voxel with the maximum over an ellipsoidal neighborhood of voxels.
If neighbours
of an axis is 1, no processing is done on that axis.
Examples:
1542 def magnitude(self) -> Self: 1543 """Colapses components with magnitude function.""" 1544 imgm = vtki.new("ImageMagnitude") 1545 imgm.SetInputData(self.dataset) 1546 imgm.Update() 1547 self._update(imgm.GetOutput()) 1548 self.pipeline = utils.OperationNode("magnitude", parents=[self], c="#4cc9f0") 1549 return self
Colapses components with magnitude function.
1551 def topoints(self) -> "vedo.Points": 1552 """ 1553 Extract all image voxels as points. 1554 This function takes an input `Volume` and creates an `Mesh` 1555 that contains the points and the point attributes. 1556 1557 Examples: 1558 - [vol2points.py](https://github.com/marcomusy/vedo/tree/master/examples/volumetric/vol2points.py) 1559 """ 1560 v2p = vtki.new("ImageToPoints") 1561 v2p.SetInputData(self.dataset) 1562 v2p.Update() 1563 mpts = vedo.Points(v2p.GetOutput()) 1564 mpts.pipeline = utils.OperationNode("topoints", parents=[self], c="#4cc9f0:#e9c46a") 1565 return mpts
Extract all image voxels as points.
This function takes an input Volume
and creates an Mesh
that contains the points and the point attributes.
Examples:
1567 def euclidean_distance(self, anisotropy=False, max_distance=None) -> "Volume": 1568 """ 1569 Implementation of the Euclidean DT (Distance Transform) using Saito's algorithm. 1570 The distance map produced contains the square of the Euclidean distance values. 1571 The algorithm has a O(n^(D+1)) complexity over n x n x...x n images in D dimensions. 1572 1573 Check out also: https://en.wikipedia.org/wiki/Distance_transform 1574 1575 Arguments: 1576 anisotropy : bool 1577 used to define whether Spacing should be used in the 1578 computation of the distances. 1579 max_distance : bool 1580 any distance bigger than max_distance will not be 1581 computed but set to this specified value instead. 1582 1583 Examples: 1584 - [euclidian_dist.py](https://github.com/marcomusy/vedo/tree/master/examples/volumetric/euclidian_dist.py) 1585 """ 1586 euv = vtki.new("ImageEuclideanDistance") 1587 euv.SetInputData(self.dataset) 1588 euv.SetConsiderAnisotropy(anisotropy) 1589 if max_distance is not None: 1590 euv.InitializeOn() 1591 euv.SetMaximumDistance(max_distance) 1592 euv.SetAlgorithmToSaito() 1593 euv.Update() 1594 vol = Volume(euv.GetOutput()) 1595 vol.pipeline = utils.OperationNode("euclidean_distance", parents=[self], c="#4cc9f0") 1596 return vol
Implementation of the Euclidean DT (Distance Transform) using Saito's algorithm. The distance map produced contains the square of the Euclidean distance values. The algorithm has a O(n^(D+1)) complexity over n x n x...x n images in D dimensions.
Check out also: https://en.wikipedia.org/wiki/Distance_transform
Arguments:
- anisotropy : bool used to define whether Spacing should be used in the computation of the distances.
- max_distance : bool any distance bigger than max_distance will not be computed but set to this specified value instead.
Examples:
1598 def correlation_with(self, vol2: "Volume", dim=2) -> "Volume": 1599 """ 1600 Find the correlation between two volumetric data sets. 1601 Keyword `dim` determines whether the correlation will be 3D, 2D or 1D. 1602 The default is a 2D Correlation. 1603 1604 The output size will match the size of the first input. 1605 The second input is considered the correlation kernel. 1606 """ 1607 imc = vtki.new("ImageCorrelation") 1608 imc.SetInput1Data(self.dataset) 1609 imc.SetInput2Data(vol2.dataset) 1610 imc.SetDimensionality(dim) 1611 imc.Update() 1612 vol = Volume(imc.GetOutput()) 1613 1614 vol.pipeline = utils.OperationNode("correlation_with", parents=[self, vol2], c="#4cc9f0") 1615 return vol
Find the correlation between two volumetric data sets.
Keyword dim
determines whether the correlation will be 3D, 2D or 1D.
The default is a 2D Correlation.
The output size will match the size of the first input. The second input is considered the correlation kernel.
1617 def scale_voxels(self, scale=1) -> Self: 1618 """Scale the voxel content by factor `scale`.""" 1619 rsl = vtki.new("ImageReslice") 1620 rsl.SetInputData(self.dataset) 1621 rsl.SetScalarScale(scale) 1622 rsl.Update() 1623 self._update(rsl.GetOutput()) 1624 self.pipeline = utils.OperationNode( 1625 "scale_voxels", comment=f"scale={scale}", parents=[self], c="#4cc9f0" 1626 ) 1627 return self
Scale the voxel content by factor scale
.
Inherited Members
- vedo.core.CommonAlgorithms
- pointdata
- celldata
- metadata
- memory_address
- memory_size
- box
- update_dataset
- xbounds
- ybounds
- zbounds
- diagonal_size
- average_size
- center_of_mass
- copy_data_from
- inputdata
- npoints
- nvertices
- ncells
- points
- cell_centers
- lines
- lines_as_flat_array
- mark_boundaries
- find_cells_in_bounds
- find_cells_along_line
- find_cells_along_plane
- keep_cell_types
- map_cells_to_points
- vertices
- coordinates
- cells_as_flat_array
- cells
- cell_edge_neighbors
- map_points_to_cells
- resample_data_from
- interpolate_data_from
- add_ids
- gradient
- divergence
- vorticity
- probe
- compute_cell_size
- generate_random_data
- integrate_data
- write
- signed_distance
- unsigned_distance
- smooth_data
- compute_streamlines